Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Kinetics and morphologies of syndiotactic polystyrene crystallized isothermally over a wide temperature range

Abstract

Time-resolved Fourier transform infrared (FTIR) spectroscopy was used to investigate the crystallization kinetics of syndiotactic polystyrene (sPS) for the first time, and the results were compared with those obtained with differential scanning calorimetry (DSC) and depolarized light scattering (DPLS). Isothermal crystallization either from the melt by cooling or from the glass by heating was used to determine the temperature (Tc) dependence of the crystallization rate (k). The derived values of k were in good agreement with the results obtained with other tools over the accessible Tc ranges 250−262 °C and 110−135 °C for melt and cold crystallization, respectively. Based on the derived k and the crystal growth rates obtained from DPLS and optical microscopy (OM), the density of primary nucleation was readily calculated. The magnitudes of the nucleation densities in the cold-crystallized samples were ~5−6 orders higher than those of the melt-crystallized samples despite the similar k values. The novelty of our work lies in revealing that the volume-filling spherulites of the cold-crystallized sPS had modulated structure, reminiscent of spinodal decomposition. Thus, the nucleation pathway for cold crystallization is relevant to spinodal-assisted nucleation, which significantly enhances the nucleation density.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sorrentino A, Vittoria V. In Syndiotactic polystyrene, John Wiely & Sons, Inc., 2009, p.155.

  2. Krishnan V, Joseph AM, Peethambharan SK, Howd EB. Nanoporous crystalline aerogels of syndiotactic polystyrene: polymorphism, dielectric, thermal, and acoustic properties. Macromolecules. 2021;54:10605–15.

    Article  CAS  Google Scholar 

  3. Woo EM, Sun YS, Yang CP. Polymorphism, thermal behavior, and crystal stability in syndiotactic polystyrene vs. its blends. Prog Polym Sci. 2001;26:945–83.

    Article  CAS  Google Scholar 

  4. Gowd EB, Tashiro K, Ramesh C. Structural phase transitions of syndiotactic polystyrene. Prog Polym Sci. 2009;34:280–315.

    Article  CAS  Google Scholar 

  5. Petraccone V, Auriemma F, Poggetto FD, De Rosa C, Guerra G, Corradini P. On the structure of the mesomorphic form of syndiotactic polystyrene. Makromol Chem. 1993;194:1335–45.

    Article  CAS  Google Scholar 

  6. Auriemma F, Petraccone V, Poggetto FD, De Rosa C, Guerra G, Manfredi C, et al. Mesomorphic form of syndiotatctic polystyrene as composed of small imperfect crystals of the hexagonal (α) crystalline form. Macromolecules. 1993;26:3772–7.

    Article  CAS  Google Scholar 

  7. Wu FS, Woo EM. Comparison of crystallization kinetics of miscible blends of syndiotactic polystyrene with atactic polystyrene or poly(l,4-dimethyl-p-phenylene oxide). Polym Eng Sci. 1999;39:825–32.

    Article  CAS  Google Scholar 

  8. Wu TM, Hsu SF, Chien CF, Wu JY. Isothermal and nonisothermal crystallization kinetics of syndiotactic polystyrene/clay nanocomposites. Polym Eng Sci. 2004;44:2288–97.

    Article  CAS  Google Scholar 

  9. Chen B, Torkelson JM. Rigid amorphous fraction and crystallinity in cold-crystallized syndiotactic polystyrene: characterization by differential scanning calorimetry. Polymer. 2021;230:124044.

    Article  CAS  Google Scholar 

  10. Cimmino S, Di Pace E, Martuscelli E, Silvestre C. Syndiotactic polystyrene-based blends: crystallization and phase structure. Polymer. 1993;34:2799–803.

    Article  CAS  Google Scholar 

  11. Wang C, Chen CC, Cheng YW, Liao WP, Wang ML. Simultaneous presence of positive and negative spherulites in syndiotactic polystyrene and its blends with atactic polystyrene. Polymer. 2002;43:5271–9.

    Article  CAS  Google Scholar 

  12. De Rosa C, De Ballesteros OR, Di Gennaro M, Auriemma F. Crystallization from the melt of α and β forms of syndiotactic polystyrene. Polymer. 2003;44:1861–70.

    Article  Google Scholar 

  13. Su CH, Jeng U, Chen SH, Lin SJ, Wu WR, Chuang WT, et al. Nanograin evolution in cold crystallization of syndiotactic polystyrene as illustrated via in-situ small/wide-angle X-ray scattering and differential scanning calorimetry. Macromolecules. 2009;42:6656–64.

    Article  CAS  Google Scholar 

  14. Wang C, Liao WP, Wang ML, Lin CC. Miscible blends of syndiotactic polystyrene and atactic polystyrene. part 2. depolarized light scattering studies and crystal growth rates. Polymer. 2004;45:973–81.

    Article  CAS  Google Scholar 

  15. Wang C, Lin CC, Chu CP. Crystallization and morphological features of syndiotactic polystyrene induced from glassy state. Polymer. 2005;46:12595–606.

    Article  CAS  Google Scholar 

  16. Yu J, Asai S, Sumita M. Time-resolved FTIR study of crystallization behavior of melt-crystallized poly(phenylene sulfide). J Macromol Sci Phys. 2000;B39:279–96.

    Article  CAS  Google Scholar 

  17. Kimura T, Ezure H, Tanaka S, Ito E. In situ FTIR spectroscopic study on crystallization process of isotactic polystyrene. J Polym Sci Polym Phys Ed 1998;36:1227–33.

    Article  CAS  Google Scholar 

  18. Duan Y, Zhang J, Shen D, Yan S. In situ FTIR studies on the cold crystallization process and multiple melting behavior of isotactic polystyrene. Macromolecules. 2003;36:4874–9.

    Article  CAS  Google Scholar 

  19. Wu HD, Wu ID, Chang FC. Characterization of crystallization in syndiotactic polystyrene thin film samples. Macromolecules. 2000;22:8915–7.

    Article  Google Scholar 

  20. Jiang Q, Zhao Y, Zhang C, Yang J, Wang D. Investigation on the overlapping bands of syndiotactic polystyrene by using 2D-IR spectroscopy. J Mol Struct. 2016;1124:98–102.

    Article  CAS  Google Scholar 

  21. Kiflie Z, Piccarolo S, Brucato V, Baltá-Calleja FJ. Role of thermal history on quiescent cold crystallization of PET. Polymer. 2002;43:4487–93.

    Article  CAS  Google Scholar 

  22. Wang ML. Crystallization and morphology of syndiotactic/atactic polystyrene blends, Master thesis, National Cheng Kung University, Tainan, Taiwan, May 2002.

  23. Painter P, Sobkowiak M, Park Y. Vibrational relaxation in atactic polystyrene: an infrared spectroscopic study. Macromolecules. 2007;40:1730–7.

    Article  CAS  Google Scholar 

  24. Wang C, Hsu YC, Lo CF. Melting behavior and equilibrium melting temperatures of syndiotactic polystyrene in α and β crystalline forms. Polymer. 2001;42:8447–60.

    Article  CAS  Google Scholar 

  25. Phillips PJ, Tseng HT. Influence of pressure on crystallization in poly(ethylene terephthalate). Macromolecules. 1989;22:1649–55.

    Article  CAS  Google Scholar 

  26. Androsch R, Schick C. Crystal nucleation of polymers at high supercooling of the melt. Adv Polym Sci. 2017;276:257–88.

    Article  CAS  Google Scholar 

  27. Wunderlich B. Macromolecular Physics; Academic: New York, 1973; Vol. 1.

  28. Androsch R, Di Lorenzo ML. Crystal nucleation in glass poly(L-lactic acid). Macromolecules. 2013;46:6048–56.

    Article  CAS  Google Scholar 

  29. Fillon B, Wittmann JC, Lotz B, Thierry A. Self-nucleation and recrytsallization of isotactic polypropylene (alpha phase) investigated by differential scanning calorimetry. J Polym Sci Polym Phys Ed. 1993;31:1383–93.

    Article  CAS  Google Scholar 

  30. Hoffman J, Davis G, Lauritzen J. The rate of crystallization of linear polymers with chain folding. In: Hannay NB, editor. Treatise on solid chemistry, vol. 3 New York: Plenum Press; 1976, p. 497–614.

  31. Suzuki T, Kovacs AJ. Temperature dependence of spherulitic growth rate of isotactic polystyrene. Polym J. 1970;1:82–100.

    Article  CAS  Google Scholar 

  32. Ferry JD. Viscoelastic properties of polymers, 3rd edition, 1980, p. 277–89. The shift factor aT is expressed by log \(a_T = - c_1^0(T - T_0)/(c_2^0 + T - T_0)\), with T0 = 373 K, \(c_1^0\) = 12.7, and \(c_2^0\) = 49.8 for the aPS.

  33. Huang CL, Chen YC, Hsiao TJ, Tsai JC, Wang C. Effect of tacticity on viscoelastic properties of polystyrene. Macromolecules. 2011;44:6155–61.

    Article  CAS  Google Scholar 

  34. Turnbull D, Fisher JC. Rate of nucleation in condensed systems. J Chem Phys. 1949;17:71–73.

    Article  CAS  Google Scholar 

  35. Tang X, Chen W, Li L. The tough journey of polymer crystallization: battling with chain flexibility and connectivity. Macromolecules. 2019;52:3575–91.

    Article  CAS  Google Scholar 

  36. Kaji K, Nishida K, Kanaya T, Matsuba G, Konishi T, Imai M. Spinodal crystallization of polymers: crystallization from the unstable melt. Adv Polym Sci. 2005;191:187–240.

    Article  CAS  Google Scholar 

  37. Koberstein J, Russell TP, Stein RS. Total integrated light scattering intensity from polymeric solids. J Polym Sci Polym Phys Ed. 1979;17:1719–30.

    Article  CAS  Google Scholar 

  38. Stein RS, Rhodes MB. Photographic light scattering by polyethylene films. J Appl Phys. 1960;31:1873–84.

    Article  CAS  Google Scholar 

  39. Pogodina NV, Winter HH. Polypropylene crystallization as a physical gelation process. Macromolecules. 1998;31:8164–72.

    Article  CAS  Google Scholar 

  40. Olmsted PD, Poon WK, McLeish TCB, Terrill NJ, Ryan AJ. Spinodal-assisted crystallization in polymer melts. Phys Rev Lett. 1998;81:373–6.

    Article  CAS  Google Scholar 

  41. Strobl G. Crystallization and melting of bulk polymers: New observations, conclusions and a thermodynamic scheme. Prog Polym Sci. 2006;31:398–442.

    Article  CAS  Google Scholar 

  42. Yeh GSY, Geil PH. Crystallization of polyethylene terephthalate from the glassy state. J Macromol Sci Phys. 1967;B1:235–49.

    Article  Google Scholar 

  43. Nakaoki T, Kobayashi M. Local conformation of glassy polystyrenes with different stereoregularity. J Mol Struct. 2003;655:343–9.

    Article  CAS  Google Scholar 

  44. Muthukumar M. Molecular modelling of nucleation in polymers. Philos Trans R Soc Lond. 2003;A361:539–56.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Ministry of Science and Technology of Taiwan (MOST 109-2221-E-006-202-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, CY., Wang, C. Kinetics and morphologies of syndiotactic polystyrene crystallized isothermally over a wide temperature range. Polym J 55, 761–773 (2023). https://doi.org/10.1038/s41428-023-00775-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00775-8

Search

Quick links