Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acceptor-acceptor type polymers based on cyano-substituted benzochalcogenadiazole and diketopyrrolopyrrole for high-efficiency n-type organic thermoelectrics

Abstract

The development of n-type organic thermoelectrics (OTEs) falls significantly behind that of their p-type counterparts. Herein, two acceptor-acceptor (A-A) polymers, PDCNBT-DPP and PDCNBSe-DPP, were generated by combining strongly electron-deficient cyano-functionalized benzochalcogenadiazole and diketopyrrolopyrrole building blocks, both of which acted as universal moieties for high-mobility polymers. The A-A polymers showed good solubility, low-lying lowest unoccupied molecular orbital (LUMO) energy levels, and narrow bandgaps; thus, predominant n-type characteristics were achieved in organic thin-film transistors. After n-type doping, both polymers exhibited n-type performance, in which the highest conductivity was 12.36 S cm−1 and a large power factor of 9.22 μW m−1 K−2 was obtained in OTE devices. Our study demonstrated that benzochalcogenadiazole is an excellent building block for developing n-type OTE materials. In addition, the A-A strategy provides an avenue for constructing new types of polymers for high-power n-type OTE materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Horowitz G. Organic semiconductors for new electronic devices. Adv Mater. 1990;2:287–92. https://doi.org/10.1002/adma.19900020604

    Article  CAS  Google Scholar 

  2. Heeger AJ. Semiconducting polymers: The third generation. Chem Soc Rev. 2010;39:2354–71. https://doi.org/10.1039/B914956M

    Article  CAS  PubMed  Google Scholar 

  3. Wang C, Dong H, Hu W, Liu Y, Zhu D. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem Rev. 2012;112:2208–67. https://doi.org/10.1021/cr100380z.

    Article  CAS  PubMed  Google Scholar 

  4. Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA. Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater. 2016;1:16050 https://doi.org/10.1038/natrevmats.2016.50

    Article  CAS  Google Scholar 

  5. McGrail BT, Sehirlioglu A, Pentzer E. Polymer composites for thermoelectric applications. Angew Chem Int Ed. 2015;54:1710–23. https://doi.org/10.1002/anie.201408431

    Article  CAS  Google Scholar 

  6. He M, Qiu F, Lin Z. Towards high-performance polymer-based thermoelectric materials. Energy Environ Sci. 2013;6:1352–61. https://doi.org/10.1039/C3EE24193A

    Article  Google Scholar 

  7. Chen Y, Zhao Y, Liang Z. Solution processed organic thermoelectrics: Towards flexible thermoelectric modules. Energy Environ Sci. 2015;8:401–22. https://doi.org/10.1039/C4EE03297G

    Article  CAS  Google Scholar 

  8. Bubnova O, Crispin X. Towards polymer-based organic thermoelectric generators. Energy Environ Sci. 2012;5:9345–62. https://doi.org/10.1039/C2EE22777K

    Article  CAS  Google Scholar 

  9. Zhao D, Fabiano S, Berggren M, Crispin X. Ionic thermoelectric gating organic transistors. Nat Commun. 2017;8:14214 https://doi.org/10.1038/ncomms14214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hata S, Tomotsu J, Gotsubo M, Du Y, Shiraishi Y, Toshima N. N-type carbon nanotube sheets for high in-plane ZT values in double-doped electron-donating graft copolymers containing diphenylhydrazines. Polym J. 2021;53:1281–6. https://doi.org/10.1038/s41428-021-00519-6

    Article  CAS  Google Scholar 

  11. Fan Z, Li P, Du D, Ouyang J. Significantly enhanced thermoelectric properties of PEDOT:PSS films through sequential post-treatments with common acids and bases. Adv Energy Mater. 2017;7:1602116 https://doi.org/10.1002/aenm.201602116

    Article  CAS  Google Scholar 

  12. Wang X, Zhang X, Sun L, Lee D, Lee S, Wang M, et al. High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Sci Adv. 2018;4:eaat5780 https://doi.org/10.1126/sciadv.aat5780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Patel SN, Glaudell AM, Kiefer D, Chabinyc ML. Increasing the thermoelectric power factor of a semiconducting polymer by doping from the vapor phase. ACS Macro Lett. 2016;5:268–72. https://doi.org/10.1021/acsmacrolett.5b00887

    Article  CAS  PubMed  Google Scholar 

  14. Bubnova O, Berggren M, Crispin X. Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor. J Am Chem Soc. 2012;134:16456–9. https://doi.org/10.1021/ja305188r

    Article  CAS  PubMed  Google Scholar 

  15. Kim GH, Shao L, Zhang K, Pipe KP. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater. 2013;12:719–23. https://doi.org/10.1038/nmat3635

    Article  CAS  PubMed  Google Scholar 

  16. Xia Y, Sun K, Ouyang J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv Mater. 2012;24:2436–40. https://doi.org/10.1002/adma.201104795

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Shi Y, Dong J, Nugraha MI, Qiu X, Su M, et al. Overcoming coulomb interaction improves free-charge generation and thermoelectric properties for n-doped conjugated polymers. ACS Energy Lett. 2019;4:1556–64. https://doi.org/10.1021/acsenergylett.9b00977

    Article  CAS  Google Scholar 

  18. Yan X, Xiong M, Li J-T, Zhang S, Ahmad Z, Lu Y, et al. Pyrazine-flanked diketopyrrolopyrrole (DPP): A new polymer building block for high-performance n-type organic thermoelectrics. J Am Chem Soc. 2019;141:20215–21. https://doi.org/10.1021/jacs.9b10107

    Article  CAS  PubMed  Google Scholar 

  19. Lu Y, Yu Z-D, Zhang R-Z, Yao Z-F, You H-Y, Jiang L, et al. Rigid coplanar polymers for stable n-type polymer thermoelectrics. Angew Chem Int Ed 2019;58:11390–4.

    Article  CAS  Google Scholar 

  20. Wang S, Sun H, Erdmann T, Wang G, Fazzi D, Lappan U, et al. A chemically doped naphthalenediimide-bithiazole polymer for n-type organic thermoelectrics. Adv Mater. 2018;30:1801898 https://doi.org/10.1002/adma.201801898

    Article  CAS  Google Scholar 

  21. Yang C-Y, Jin W-L, Wang J, Ding Y-F, Nong S, Shi K, et al. Enhancing the n-type conductivity and thermoelectric performance of donor–acceptor copolymers through donor engineering. Adv Mater. 2018;30:1802850 https://doi.org/10.1002/adma.201802850

    Article  CAS  Google Scholar 

  22. Liu J, Ye G, Zee BVD, Dong J, Qiu X, Liu Y, et al. N-type organic thermoelectrics of donor–acceptor copolymers: Improved power factor by molecular tailoring of the density of states. Adv Mater. 2018;30:1804290 https://doi.org/10.1002/adma.201804290

    Article  CAS  Google Scholar 

  23. Lu Y, Wang J-Y, Pei J. Strategies to enhance the conductivity of n-type polymer thermoelectric materials. Chem Mater. 2019;31:6412–23. https://doi.org/10.1021/acs.chemmater.9b01422

    Article  CAS  Google Scholar 

  24. Wang S, Fazzi D, Puttisong Y, Jafari MJ, Chen Z, Ederth T, et al. Effect of backbone regiochemistry on conductivity, charge density, and polaron structure of n-doped donor–acceptor polymers. Chem Mater. 2019;31:3395–406. https://doi.org/10.1021/acs.chemmater.9b00558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gross YM, Trefz D, Dingler C, Bauer D, Vijayakumar V, Untilova V, et al. From isotropic to anisotropic conductivities in p(ndi2od-t2) by (electro-)chemical doping strategies. Chem Mater. 2019;31:3542–55. https://doi.org/10.1021/acs.chemmater.9b00977

    Article  CAS  Google Scholar 

  26. Naab BD, Gu X, Kurosawa T, To JWF, Salleo A, Bao Z. Role of polymer structure on the conductivity of n-doped polymers. Adv Electron Mater. 2016;2:1600004 https://doi.org/10.1002/aelm.201600004

    Article  CAS  Google Scholar 

  27. Tripathi A, Lee Y, Lee S, Woo HY. Recent advances in n-type organic thermoelectric materials, dopants, and doping strategies. J Mater Chem C. 2022;10:6114–40. https://doi.org/10.1039/D1TC06175E

    Article  CAS  Google Scholar 

  28. Lu Y, Yu Z-D, Un H-I, Yao Z-F, You H-Y, Jin W, et al. Persistent conjugated backbone and disordered lamellar packing impart polymers with efficient n-doping and high conductivities. Adv Mater. 2021;33:2005946 https://doi.org/10.1002/adma.202005946

    Article  CAS  Google Scholar 

  29. Guo H, Yang C-Y, Zhang X, Motta A, Feng K, Xia Y, et al. Transition metal-catalysed molecular n-doping of organic semiconductors. Nature. 2021;599:67–73. https://doi.org/10.1038/s41586-021-03942-0

    Article  CAS  PubMed  Google Scholar 

  30. Guo K, Bai J, Jiang Y, Wang Z, Sui Y, Deng Y, et al. Diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation for high mobility pure n-channel organic field-effect transistors. Adv Funct Mater. 2018;28:1801097 https://doi.org/10.1002/adfm.201801097

    Article  CAS  Google Scholar 

  31. Nielsen CB, Turbiez M, McCulloch I. Recent advances in the development of semiconducting DPP-containing polymers for transistor applications. Adv Mater. 2013;25:1859–80. https://doi.org/10.1002/adma.201201795

    Article  CAS  PubMed  Google Scholar 

  32. Chandran D, Lee K-S. Diketopyrrolopyrrole: A versatile building block for organic photovoltaic materials. Macromol Res. 2013;21:272–83. https://doi.org/10.1007/s13233-013-1141-3

    Article  CAS  Google Scholar 

  33. Park JH, Jung EH, Jung JW, Jo WH. A fluorinated phenylene unit as a building block for high-performance n-type semiconducting polymer. Adv Mater. 2013;25:2583–8. https://doi.org/10.1002/adma.201205320

    Article  CAS  PubMed  Google Scholar 

  34. Liu Q, He W, Shi Y, Otep S, Tan WL, Manzhos S, et al. Directional carrier polarity tunability in ambipolar organic transistors based on diketopyrrolopyrrole and bithiophene imide dual-acceptor semiconducting polymers. Chem Mater. 2022;34:3140–51. https://doi.org/10.1021/acs.chemmater.1c04258

    Article  CAS  Google Scholar 

  35. Shi S, Wang H, Chen P, Uddin MA, Wang Y, Tang Y, et al. Cyano-substituted benzochalcogenadiazole-based polymer semiconductors for balanced ambipolar organic thin-film transistors. Polym Chem. 2018;9:3873–84. https://doi.org/10.1039/C8PY00540K

    Article  CAS  Google Scholar 

  36. Feng K, Huang J, Zhang X, Wu Z, Shi S, Thomsen L, et al. High-performance all-polymer solar cells enabled by n-type polymers with an ultranarrow bandgap down to 1.28 ev. Adv Mater. 2020;32:2001476 https://doi.org/10.1002/adma.202001476

    Article  CAS  Google Scholar 

  37. Kumsampao J, Chaiwai C, Chasing P, Chawanpunyawat T, Namuangruk S, Sudyoadsuk T, et al. A simple and strong electron-deficient 5,6-dicyano[2,1,3]benzothiadiazole-cored donor-acceptor-donor compound for efficient near infrared thermally activated delayed fluorescence. Chem Asian J. 2020;15:3029–36. https://doi.org/10.1002/asia.202000727

    Article  CAS  PubMed  Google Scholar 

  38. Park KH, Go J-Y, Lim B, Noh Y-Y. Recent progress in lactam-based polymer semiconductors for organic electronic devices. J Polym Sci. 2022;60:429–85. https://doi.org/10.1002/pol.20210625

    Article  CAS  Google Scholar 

  39. Zhao W, Ding J, Zou Y, Di C-A, Zhu D. Chemical doping of organic semiconductors for thermoelectric applications. Chem Soc Rev. 2020;49:7210–28. https://doi.org/10.1039/D0CS00204F

    Article  CAS  PubMed  Google Scholar 

  40. Di Pietro R, Erdmann T, Carpenter JH, Wang N, Shivhare RR, Formanek P, et al. Synthesis of high-crystallinity DPP polymers with balanced electron and hole mobility. Chem Mater. 2017;29:10220–32. https://doi.org/10.1021/acs.chemmater.7b04423

    Article  CAS  Google Scholar 

  41. Zhang A, Xiao C, Wu Y, Li C, Ji Y, Li L, et al. Effect of fluorination on molecular orientation of conjugated polymers in high performance field-effect transistors. Macromolecules. 2016;49:6431–8. https://doi.org/10.1021/acs.macromol.6b01446

    Article  CAS  Google Scholar 

  42. Kang I, Yun H-J, Chung DS, Kwon S-K, Kim Y-H. Record high hole mobility in polymer semiconductors via side-chain engineering. J Am Chem Soc. 2013;135:14896–9. https://doi.org/10.1021/ja405112s

    Article  CAS  PubMed  Google Scholar 

  43. Gao Y, Bai J, Sui Y, Han Y, Deng Y, Tian H, et al. High mobility ambipolar diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation: Influence of thiophene moieties and side chains. Macromolecules. 2018;51:8752–60. https://doi.org/10.1021/acs.macromol.8b01112

    Article  CAS  Google Scholar 

  44. Shi S, Chen P, Chen Y, Feng K, Liu B, Chen J, et al. A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells. Adv Mater. 2019;31:1905161 https://doi.org/10.1002/adma.201905161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X.G. is thankful for the financial support from the Songshan Lake Materials Laboratory (2021SLABFK03) and the Guangdong Provincial Key Laboratory Program (2021B1212040001) from the Department of Science and Technology of Guangdong Province. K.F acknowledges the financial support from the Guangdong Basic and Applied Basic Research Foundation (2021A1515011640), the Shenzhen Basic Research Fund (no. JCYJ20190809162003662) and the National Natural Science Foundation of China (22005135). This work is also supported by the Center for Computational Science and Engineering at Southern University of Science and Technology (SUSTech). The authors acknowledge the assistance of the SUSTech Core Research Facilities.

Author information

Authors and Affiliations

Authors

Contributions

J.W. and K.F. contributed equally to this work.

Corresponding authors

Correspondence to Kui Feng or Xugang Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Feng, K., Jeong, S.Y. et al. Acceptor-acceptor type polymers based on cyano-substituted benzochalcogenadiazole and diketopyrrolopyrrole for high-efficiency n-type organic thermoelectrics. Polym J 55, 507–515 (2023). https://doi.org/10.1038/s41428-022-00717-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00717-w

Search

Quick links