Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Direct arylation polycondensation for the synthesis of medium-bandgap polymer donors (PBDB-T) for organic photovoltaics

Abstract

Medium-bandgap polymer donors (such as PBDB-T) and their derivatives are promising donor materials for organic photovoltaics (OPVs). In this study, we aimed to develop a facile synthetic approach for PBDB-T using a C–H/C–I direct arylation reaction in monomer synthesis and C–H/C–Br direct arylation for polymerization. Polycondensation and end-capping methods using direct arylation reactions have been established, enabling the synthesis of polymers without Br termini. The OPV performance of the synthesized polymer was evaluated and compared to that of a benchmark polymer. The synthesized polymer exhibited lower OPV performance than the benchmark polymer despite having similar molecular weights. Possible factors contributing to low OPV performance and future challenges include structural defects, impurities, and large molecular weight distribution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev. 2009;109:897–1091.

    Article  CAS  PubMed  Google Scholar 

  2. Jiang T, Liu Y, Ren Z, Yan S. The design, synthesis and performance of thermally activated delayed fluorescence macromolecules. Polym Chem. 2020;11:1555–71.

    Article  CAS  Google Scholar 

  3. Beaujuge PM, Fréchet JMJ. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J Am Chem Soc. 2011;133:20009–29.

    Article  CAS  PubMed  Google Scholar 

  4. Takimiya K, Nakano M. Thiophene-fused naphthalene diimides: New building blocks for electron deficient p-functional materials. Bull Chem Soc Jpn. 2018;91:121–40.

    Article  CAS  Google Scholar 

  5. Iino H, Hanna JI. Liquid crystalline organic semiconductors for organic transistor applications. Polym J. 2017;49:23–30.

    Article  CAS  Google Scholar 

  6. Liu C, Wang K, Gong X, Heeger AJ. Low bandgap semiconducting polymers for polymeric photovoltaics. Chem Soc Rev. 2016;45:4825–46.

    Article  CAS  PubMed  Google Scholar 

  7. Holliday S, Li Y, Luscombe CK. Recent advances in high performance donor-acceptor polymers for organic photovoltaics. Prog Polym Sci. 2017;70:34–51.

    Article  CAS  Google Scholar 

  8. Saito M, Ohkita H, Osaka I. π-Conjugated polymers and molecules enabling small photon energy loss simultaneously with high efficiency in organic photovoltaics. J Mater Chem A. 2020;8:20213–37.

    Article  CAS  Google Scholar 

  9. Sun L, Xu X, Song S, Zhang Y, Miao C, Liu X, et al. Medium‐Bandgap conjugated polymer donors for organic photovoltaics. Macromol Rapid Commun. 2019;40:1900074.

    Article  Google Scholar 

  10. Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, et al. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules. 2012;45:9611–7.

    Article  CAS  Google Scholar 

  11. Zhang S, Qin Y, Zhu J, Hou J. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv Mater. 2018;30:1800868.

    Article  Google Scholar 

  12. Armin A, Li W, Sandberg OJ, Xiao Z, Ding L, Nelson J, et al. A history and perspective of non‐fullerene electron acceptors for organic solar cells. Adv Energy Mater. 2021;11:2003570.

    Article  CAS  Google Scholar 

  13. Zheng Z, Yao H, Ye L, Xu Y, Zhang S, Hou J. PBDB-T and its derivatives: A family of polymer donors enables over 17% efficiency in organic photovoltaics. Mater Today. 2020;35:115–30.

    Article  CAS  Google Scholar 

  14. Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang JL. et al. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat Commun. 2019;10:570.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kuwabara J. Direct arylation polycondensation for synthesis of optoelectronic materials. Polym J. 2018;50:1099–106.

    Article  CAS  Google Scholar 

  16. Mainville M, Leclerc M. Direct (Hetero)arylation: a tool for low-cost and eco-friendly organic photovoltaics. ACS Appl Polym Mater. 2021;3:2–13.

    Article  CAS  Google Scholar 

  17. Kuwabara J, Kanbara T. Step‐economical synthesis of conjugated polymer materials composed of three components: donor, acceptor, and π units. Macromol Rapid Commun. 2021;42:2000493.

    Article  CAS  Google Scholar 

  18. Sakamoto J, Rehahn M, Wegner G, Schlüter AD. Suzuki polycondensation: Polyarylenes à la carte. Macromol Rapid Commun. 2009;30:653–87.

    Article  CAS  PubMed  Google Scholar 

  19. Carsten B, He F, Son HJ, Xu T, Yu L. Stille polycondensation for synthesis of functional materials. Chem Rev. 2011;111:1493–528.

    Article  CAS  PubMed  Google Scholar 

  20. Satoh T, Miura M. Catalytic direct arylation of heteroaromatic compounds. Chem Lett. 2007;36:200–5.

    Article  CAS  Google Scholar 

  21. Ackermann L, Vicente R, Kapdi AR. Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage. Angew Chem, Int Ed. 2009;48:9792–827.

    Article  CAS  Google Scholar 

  22. Liégault B, Lapointe D, Caron L, Vlassova A, Fagnou K. Establishment of broadly applicable reaction conditions for the palladium-catalyzed direct arylation of heteroatom-containing aromatic compounds. J Org Chem. 2009;74:1826–34.

    Article  PubMed  Google Scholar 

  23. Rossi R, Bellina F, Lessi M, Manzini C. Cross-coupling of heteroarenes by C-H functionalization: Recent progress towards direct arylation and heteroarylation reactions involving heteroarenes containing one heteroatom. Adv Synth Catal. 2014;356:17–117.

    Article  CAS  Google Scholar 

  24. Segawa Y, Maekawa T, Itami K. Synthesis of extended π-systems through C-H activation. Angew Chem Int Ed. 2015;54:66–81.

    Article  CAS  Google Scholar 

  25. Po R, Bernardi A, Calabrese A, Carbonera C, Corso G, Pellegrino A. From lab to fab: how must the polymer solar cell materials design change?—an industrial perspective. Energy Environ Sci. 2014;7:925–43.

    Article  CAS  Google Scholar 

  26. Po R, Bianchi G, Carbonera C, Pellegrino A. ‘All that glisters is not gold’: An analysis of the synthetic complexity of efficient polymer donors for polymer solar cells. Macromolecules. 2015;48:453–61.

    Article  CAS  Google Scholar 

  27. Wang Q, Takita R, Kikuzaki Y, Ozawa F. Palladium-catalyzed dehydrohalogenative polycondensation of 2-bromo-3-hexylthiophene: An efficient approach to head-to-tail poly(3-hexylthiophene). J Am Chem Soc. 2010;132:11420–1.

    Article  CAS  PubMed  Google Scholar 

  28. Lu W, Kuwabara J, Kanbara T. Polycondensation of dibromofluorene analogues with tetrafluorobenzene via direct arylation. Macromolecules. 2011;44:1252–5.

    Article  CAS  Google Scholar 

  29. Matsidik R, Komber H, Luzio A, Caironi M, Sommer M. Defect-free naphthalene diimide bithiophene copolymers with controlled molar mass and high performance via direct arylation polycondensation. J Am Chem Soc. 2015;137:6705–11.

    Article  CAS  PubMed  Google Scholar 

  30. Wakioka M, Ozawa F. Highly efficient catalysts for direct arylation polymerization (DArP). Asian J Org Chem. 2018;7:1206–16.

    Article  CAS  Google Scholar 

  31. Kuwabara J, Kanbara T. Facile synthesisof π-conjugated polymers via direct arylation polycondensation. Bull Chem Soc Jpn. 2019;92:152–61.

    Article  CAS  Google Scholar 

  32. Leclerc M, Brassard S, Beaupré S. Direct (hetero)arylation polymerization: toward defect-free conjugated polymers. Polym J. 2020;52:13–20.

    Article  CAS  Google Scholar 

  33. Michelin RA, Zanotto L, Braga D, Sabatino P, Angelici RJ. Transition-metal-promoted cyclization reactions of isocyanide ligands. Synthesis of cyclic aminooxycarbene complexes of platinum(II) and x-ray structure of trans-[(PPh3)2Pt[CN(C6H4Me-p)CH2CH2O]Br]BF4. Inorg Chem. 1988;27:85–92.

    Article  CAS  Google Scholar 

  34. Braunecker WA, Oosterhout SD, Owczarczyk ZR, Larsen RE, Larson BW, Ginley DS, et al. Ethynylene-linked donor–acceptor alternating copolymers. Macromolecules. 2013;46:3367–75.

    Article  CAS  Google Scholar 

  35. Xu S, Zhou Z, Fan H, Ren L, Liu F, Zhu X, et al. An electron-rich 2-alkylthieno[3,4-b]thiophene building block with excellent electronic and morphological tunability for high-performance small-molecule solar cells. J Mater Chem A. 2016;4:17354–62.

    Article  CAS  Google Scholar 

  36. MacDowell DWH, Wisowaty JC. Thiophene analogs of anthraquinone. J Org Chem. 1972;37:1712–7.

    Article  CAS  Google Scholar 

  37. Faradhiyani A, Zhang Q, Maruyama K, Kuwabara J, Yasuda T, Kanbara T. Synthesis of bithiazole-based semiconducting polymers via Cu-catalysed aerobic oxidative coupling. Mater Chem Front. 2018;2:1306–9.

    Article  CAS  Google Scholar 

  38. Kuwabara J, Tsuchida W, Guo S, Hu Z, Yasuda T, Kanbara T. Synthesis of conjugated polymers via direct C–H/C–Cl coupling reactions using a Pd/Cu binary catalytic system. Polym Chem. 2019;10:2298–304.

    Article  CAS  Google Scholar 

  39. Kobayashi K, Sugie A, Takahashi M, Masui K, Mori A. Palladium-catalyzed coupling reactions of bromothiophenes at the C−H bond adjacent to the sulfur atom with a new activator system, AgNO3/KF. Org Lett. 2005;7:5083–5.

    Article  CAS  PubMed  Google Scholar 

  40. Mori A, Sugie A. Palladium-catalyzed CH arylation and dehydrogenative homocoupling of heteroaromatic compounds and application to the design of advanced organic materials. Bull Chem Soc Jpn. 2008;81:548–61.

    Article  CAS  Google Scholar 

  41. Kuwabara J, Nohara Y, Choi SJ, Fujinami Y, Lu W, Yoshimura K, et al. Direct arylation polycondensation for the synthesis of bithiophene-based alternating copolymers. Polym Chem. 2013;4:947–53.

    Article  CAS  Google Scholar 

  42. Kuwabara J, Fujie Y, Maruyama K, Yasuda T, Kanbara T. Suppression of homocoupling side reactions in direct arylation polycondensation for producing high performance OPV materials. Macromolecules. 2016;49:9388–95.

    Article  CAS  Google Scholar 

  43. Fujinami Y, Kuwabara J, Lu W, Hayashi H, Kanbara T. Synthesis of thiophene- and bithiophene-based alternating copolymers via Pd-catalyzed direct C-H arylation. ACS Macro Lett. 2012;1:67–70.

    Article  CAS  PubMed  Google Scholar 

  44. Iizuka E, Wakioka M, Ozawa F. Mixed-ligand approach to palladium-catalyzed direct arylation polymerization: Synthesis of donor-acceptor polymers with dithienosilole (DTS) and thienopyrroledione (TPD) units. Macromolecules. 2015;48:2989–93.

    Article  CAS  Google Scholar 

  45. Wakioka M, Morita H, Ichihara N, Saito M, Osaka I, Ozawa F. Mixed-ligand approach to palladium-catalyzed direct arylation polymerization: synthesis of donor–acceptor polymers containing unsubstituted bithiophene units. Macromolecules. 2020;53:158–64.

    Article  CAS  Google Scholar 

  46. Kim Y, Cook S, Kirkpatrick J, Nelson J, Durrant JR, Bradley DDC, et al. Effect of the end group of regioregular poly(3-hexylthiophene) polymers on the performance of polymer/fullerene solar cells. J Phys Chem C. 2007;111:8137–41.

    Article  CAS  Google Scholar 

  47. Park JK, Jo J, Seo JH, Moon JS, Park YD, Lee K, et al. End-capping effect of a narrow bandgap conjugated polymer on bulk heterojunction solar cells. Adv Mater. 2011;23:2430–5.

    Article  CAS  PubMed  Google Scholar 

  48. Kuwabara J, Yasuda T, Takase N, Kanbara T. Effects of the terminal structure, purity, and molecular weight of an amorphous conjugated polymer on its photovoltaic characteristics. ACS Appl Mater Interfaces. 2016;8:1752–8.

    Article  CAS  PubMed  Google Scholar 

  49. Asai H, Xue D, Kamiya S, Kuwabara J, Kanbara T, Marumoto K. Direct evidence of the internal deterioration mechanism due to molecular chain ends in polymer solar cells by operando spin detection. ACS Appl Polym Mater. 2022;4:607–17.

    Article  CAS  Google Scholar 

  50. Tong M, Cho S, Rogers JT, Schmidt K, Hsu BBY, Moses D, et al. Higher molecular weight leads to improved photoresponsivity, charge transport and interfacial ordering in a narrow bandgap semiconducting polymer. Adv Funct Mater. 2010;20:3959–65.

    Article  CAS  Google Scholar 

  51. Osaka I, Saito M, Mori H, Koganezawa T, Takimiya K. Drastic change of molecular orientation in a thiazolothiazole copolymer by molecular-weight control and blending with PC61BM leads to high efficiencies in solar cells. Adv Mater. 2012;24:425–30.

    Article  CAS  PubMed  Google Scholar 

  52. Ashraf RS, Schroeder BC, Bronstein HA, Huang Z, Thomas S, Kline RJ, et al. The influence of polymer purification on photovoltaic device performance of a series of indacenodithiophene donor polymers. Adv Mater. 2013;25:2029–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Chemical Analysis Center of University of Tsukuba for the measurements of NMR and MALDI-TOF-MS spectra. The authors also thank Prof. Y. Nishihara and Prof. H. Mori of Okayama University for the measurement of high-temperature GPC. This work was partly supported by the SEI GROUP CSR Foundation and JST A-STEP Grant Number JPMJTM20BT.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junpei Kuwabara or Takaki Kanbara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuwabara, J., Hiyaji, K., Guo, S. et al. Direct arylation polycondensation for the synthesis of medium-bandgap polymer donors (PBDB-T) for organic photovoltaics. Polym J 55, 395–404 (2023). https://doi.org/10.1038/s41428-022-00712-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00712-1

Search

Quick links