Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular dynamics simulations of the folding structure of a thermoresponsive 2-dimethylaminoethyl methacrylate oligomer in the globule state

Abstract

The conformational changes of molecular chains in a polymer significantly affect the hydrophobicity, biocompatibility, and stimuli responsiveness. Herein, the folding behavior of a poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) surrounded by water molecules was evaluated using molecular dynamics simulations over a wide temperature range (280–360 K). The PDMAEMA chain was simplified as a linear 30 mer with alternately protonated side chains. The radius of gyration (Rg) of the 30 mer was calculated to confirm that it formed a globule state at higher temperatures; the Rg values diminished unexceptionally to ca. 10 Å at higher temperatures (≥320 K), indicating that the DMAEMA oligomer formed a globule structure above the previously reported lower critical solution temperature of a PDMAEMA gel (~308–313 K). Furthermore, radial distribution functions (RDFs) around the geometric center of the 30 mer were evaluated; they indicated that protonated amine groups surrounded the aggregated deprotonated amine groups in the globule state. The calculation of RDFs around the geometric center of a simplified oligomer chain described here is a highly reliable strategy for evaluating the folding behavior of stimuli-responsive polymer gels during coil-to-globule transitions at the molecular level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 2011;12:1387–408.

    Article  Google Scholar 

  2. Ward MA, Georgiou TK. Thermoresponsive Polymers for Biomedical Applications. Polymers 2011;3:1215–42.

    Article  CAS  Google Scholar 

  3. Qiu Y, Park K. Environment-Sensitive Hydrogels for Drug Delivery. Adv Drug Deliv Rev. 2001;53:321–39.

    Article  CAS  Google Scholar 

  4. Roy D, Brooks WLA, Sumerlin BS. New Directions in Thermoresponsive Polymers. Chem Soc Rev. 2013;42:7214–43.

    Article  CAS  Google Scholar 

  5. Klouda L. Thermoresponsive hydrogels in biomedical applications: a seven-year update. Eur J Pharm Biopharm. 2015;97:338–49.

    Article  CAS  Google Scholar 

  6. Weissman JM, Sunkara HB, Tse AS, Asher SA. Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials. Science. 1996;274:959–63.

    Article  CAS  Google Scholar 

  7. Kobayashi J, Kikuchi A, Sakai K, Okano T. Cross-Linked Thermo Responsive Anionic Polymer-Grafted Surfaces to Separate Bioactive Basic Peptides. Anal Chem. 2003;75:3244–9.

    Article  CAS  Google Scholar 

  8. Qin S, Geng Y, Discher DE, Yang S. Temperature-Controlled Assembly and Release from Polymer Vesicles of Poly(Ethylene Oxide)-Block-Poly(N-isopropylacrylamide). Adv Mater. 2006;18:2905–9.

    Article  CAS  Google Scholar 

  9. Johnson RP, Jeong YI, John JV, Chung CW, Kang DH, Selvaraj M, et al. Dual Stimuli-Responsive Poly(N-isopropylacrylamide)-b-Poly(L-Histidine) Chimeric Materials for the Controlled Delivery of Doxorubicin into Liver Carcinoma. Biomacromolecules. 2013;14:1434–43.

    Article  CAS  Google Scholar 

  10. Halperin A, Kröger M, Winnik FM. Poly(N-isopropylacrylamide) Phase Diagrams: Fifty Years of Research. Angew Chem Int Ed Engl. 2015;54:15342–67.

    Article  CAS  Google Scholar 

  11. Nagase K, Yamato M, Kanazawa H, Okano T. Poly(N-Isopropylacrylamide)-Based Thermoresponsive Surfaces Provide New Types of Biomedical Applications. Biomaterials 2018;153:27–48.

    Article  CAS  Google Scholar 

  12. Gohy JF, Antoun S, Jérôme R. PH-Dependent Micellization of Poly(2-Vinylpyridine)-Block-Poly((Dimethylamino)Ethylmethacrylate) Diblock Copolymers. Macromolecules 2001;34:7435–40.

    Article  CAS  Google Scholar 

  13. Bütün V, Armes SP, Billingham NC. Synthesis and Aqueous Solution Properties of near-Monodisperse Tertiary Amine Methacrylate Homopolymers and Diblock Copolymers. Polymer 2001;42:5993–6008.

    Article  Google Scholar 

  14. Plamper FA, Schmalz A, Ballauff M, Müller AH. Tuning the Thermoresponsiveness of Weak Polyelectrolytes by pH and Light: Lower and Upper Critical-Solution Temperature of Poly(N,N-Dimethylaminoethyl Methacrylate). J Am Chem Soc. 2007;129:14538–9.

    Article  CAS  Google Scholar 

  15. Synatschke CV, Schallon A, Jérôme V, Freitag R, Müller AHE. Influence of Polymer Architecture and Molecular Weight of Poly(2-(Dimethylamino)Ethyl Methacrylate) Polycations on Transfection Efficiency and Cell Viability in Gene Delivery. Biomacromolecules 2011;12:4247–55.

    Article  CAS  Google Scholar 

  16. Zhu C, Jung S, Luo S, Meng F, Zhu X, Park TG, et al. Co-Delivery of siRNA and Paclitaxel into Cancer Cells by Biodegradable Cationic Micelles Based on PDMAEMA-PCL-PDMAEMA Triblock Copolymers. Biomaterials 2010;31:2408–16.

    Article  CAS  Google Scholar 

  17. Lee SB, Russell AJ, Matyjaszewski K. ATRP Synthesis of Amphiphilic Random, Gradient, and Block Copolymers of 2-(Dimethylamino)Ethyl Methacrylate and n-Butyl Methacrylate in Aqueous Media. Biomacromolecules 2003;4:1386–93.

    Article  CAS  Google Scholar 

  18. Plamper FA, McKee JR, Laukkanen A, Nykänen A, Walther A, Ruokolainen J, et al. Miktoarm Stars of Poly(Ethylene Oxide) and Poly(Dimethylaminoethyl Methacrylate): Manipulation of Micellization by Temperature and Light. Soft Matter. 2009;5:1812–21.

    Article  CAS  Google Scholar 

  19. Liu X, Ni P, He J, Zhang M. Synthesis and Micellization of pH/Temperature-Responsive Double-Hydrophilic Diblock Copolymers Polyphosphoester-Block-Poly[2-(Dimethylamino)Ethylmethacrylate] Prepared via ROP and ATRP. Macromolecules. 2010;43:4771–81.

  20. Cai Y, Shen W, Wang R, Krantz WB, Fane AG, Hu X. CO2 Switchable Dual Responsive Polymers as Draw Solutes for Forward Osmosis Desalination. Chem Commun (Camb). 2013;49:8377–9.

    Article  CAS  Google Scholar 

  21. Thavanesan T, Herbert C, Plamper FA. Insight in the Phase Separation Peculiarities of Poly (Dialkylaminoethyl Methacrylate)s. Langmuir 2014;30:5609–19.

    Article  CAS  Google Scholar 

  22. Du H, Wickramasinghe R, Qian X. Effects of Salt on the Lower Critical Solution Temperature of Poly (N-Isopropylacrylamide). J Phys Chem B 2010;114:16594–604.

    Article  CAS  Google Scholar 

  23. Alaghemandi M, Spohr E. Molecular Dynamics Investigation of the Thermo-Responsive Polymer Poly(N-isopropylacrylamide). Macromol Theory Simul. 2012;21:106–12.

    Article  CAS  Google Scholar 

  24. Walter J, Sehrt J, Vrabec J, Hasse H. Molecular Dynamics and Experimental Study of Conformation Change of Poly(N-isopropylacrylamide) Hydrogels in Mixtures of Water and Methanol. J Phys Chem B. 2012;116:5251–9.

    Article  CAS  Google Scholar 

  25. Tucker AK, Stevens MJ. Study of the Polymer Length Dependence of the Single Chain Transition Temperature in Syndiotactic Poly(N‑isopropylacrylamide) Oligomers in Water. Macromolecules. 2012;45:6697–703.

    Article  CAS  Google Scholar 

  26. Umapathi R, Vepuri SB, Venkatesu P, Soliman ME. Comprehensive Computational and Experimental Analysis of Biomaterial toward the Behavior of Imidazolium-Based Ionic Liquids: An Interplay between Hydrophilic and Hydrophobic Interactions. J Phys Chem B. 2017;121:4909–22.

    Article  CAS  Google Scholar 

  27. Narang P, Vepuri SB, Venkatesu P, Soliman ME. An Unexplored Remarkable PNIPAM-Osmolyte Interaction Study: An Integrated Experimental and Simulation Approach. J Colloid Interfac Sci. 2017;504:417–28.

    Article  CAS  Google Scholar 

  28. Min SH, Kwak SK, Kim BS. Atomistic Simulation for Coil-to-Globule Transition of Poly(2-Dimethylaminoethyl Methacrylate). Soft Matter. 2015;11:2423–33.

    Article  CAS  Google Scholar 

  29. Min SH, Kwak SK, Kim BS. Atomistic Insight into the Role of Amine Groups in Thermoresponsive Poly(2-Dialkylaminoethyl Methacrylate)s. Polymer 2017;124:219–25.

    Article  CAS  Google Scholar 

  30. Lee H, Son SH, Sharma R, Won YY. A Discussion of the PH-Dependent Protonation Behaviors of Poly(2-(Dimethylamino)Ethyl Methacrylate) (PDMAEMA) and Poly(Ethylenimine-ran-2-ethyl-2-oxazoline) (P(EI-r-EOz)). J Phys Chem B. 2011;115:844–60.

    Article  CAS  Google Scholar 

  31. Case DA, Cerutti DS, Cheatham III TE, Darden TA, Duke RE, Giese TJ, et al. AMBER 2016, University of California, San Francisco; 2016.

  32. Wu Y, Tepper HL, Voth GA. Flexible Simple Point-Charge Water Model with Improved Liquid-State Properties. J Chem Phys. 2006;124:024503.

    Article  Google Scholar 

  33. Nagumo R, Suzuki R, Miyake T, Furukawa H, Iwata S, Mori H. Molecular Dynamics Study of the Correlation between the Solvation Structures and the Antifouling Properties of Three Types of Betaine Moieties. J Chem Eng Jpn. 2017;50:333–8.

    Article  CAS  Google Scholar 

  34. Nagumo R, Matsuoka T, Iwata S. Interactions between Acrylate/Methacrylate Biomaterials and Organic Foulants Evaluated by Molecular Dynamics Simulations of Simplified Binary Mixtures. ACS Biomater Sci Eng. 2021;7:3709–17.

    Article  CAS  Google Scholar 

  35. Nagumo R, Omori K, Muraki Y, Iwata S, Mori H, Yamada H. Correlation between Macroscopic Diffusion Rates and Microscopic Interactions in Ethylene Glycol-Based Solvents. Ind Eng Chem Res. 2021;60:13368–76.

    Article  CAS  Google Scholar 

  36. Humphrey W, Dalke A, Schulten K. VMD: Visual Molecular Dynamics. J Mol Graph. 1996;14:33–38.

    Article  CAS  Google Scholar 

  37. Han D, Tong X, Boissiére O, Zhao Y. General Strategy for Making CO2-Switchable Polymers. ACS Macro Lett. 2012;1:57–61.

    Article  CAS  Google Scholar 

  38. Skandalis A, Selianitis D, Sory DR, Rankin SM, Jones JR, Pispas S. Poly(2-(Dimethylamino) Ethyl Methacrylate)-b-Poly(Lauryl Methacrylate)-b-Poly(Oligo Ethylene Glycol Methacrylate) Triblock Terpolymer Micelles as Drug Delivery Carriers for Curcumin. J Appl Polm Sci. 2022; https://doi.org/10.1002/app.52899.

  39. Hadiouch S, Maresca M, Gigmes D, Machado G, Maurel-Pantel A, Frik S, et al. A Versatile and Straightforward Process To Turn Plastics into Antibacterial Materials. Polym Chem. 2022;13:69–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Salt Science Research Foundation (grant no. 1811) and JSPS KAKENHI (grant no. 19K05120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Nagumo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagumo, R., Nishikawa, K., Sato, A. et al. Molecular dynamics simulations of the folding structure of a thermoresponsive 2-dimethylaminoethyl methacrylate oligomer in the globule state. Polym J 55, 85–93 (2023). https://doi.org/10.1038/s41428-022-00705-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00705-0

Search

Quick links