Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Octenyl succinate hydroxypropyl acidolysis tamarind gum: synthesis, optimization, structure and properties

Abstract

Octenyl succinate hydroxypropyl acidolysis tamarind gum (OSA-HATG) with a high substitution degree of ester groups was first synthesized using hydroxypropyl acidolysis tamarind gum (HATG) as a raw material, 1-butyl-3-methylimidazolium chloride (ionic liquid) as a solvent, octenyl succinic anhydride (OSA) as an acylating agent, and 4-dimethylamino pyridine (DMAP) as a catalyst. The results showed that OSA-HATG, as a new emulsifier, has good emulsification capacity and stability. The emulsifying capacity of OSA-HATG increased with increasing substitution degree. Acidolysis (acid hydrolysis) and hydroxypropylation were mainly conducted on the large particles of TG. The stretching vibration peaks of the C=O bonds at 1735 cm−1 and C=C bonds at 1654 cm−1 indicated that the acylation of HATG by OSA was successfully accomplished. TG was almost amorphous. The acylation resulted in a reduction in the thermal stability of OSA-HATG but obviously increased the contact angle of OSA-HATG (102.7°). The addition of TG and its derivatives did not improve the setback of potato starch. The acidolysis and hydroxypropylation could swell the TG particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Poommarinvarakul S, Tattiyakul J, Muangnapoh C. Isolation and rheological properties of tamarind seed polysaccharide from tamarind kernel powder using protease enzyme and high-intensity ultrasound. J Food Sci. 2010;75:E253–60. https://doi.org/10.1111/j.1750-3841.2010.01613.x.

    Article  CAS  Google Scholar 

  2. Ponnikornkit B, Ngamsalak C, Huanbutta K, Sittikijyothin W. Swelling behaviour of carboxymethylated tamarind gum. Advanced Materials Research. 2014;1060:137–40. https://doi.org/10.4028/www.scientific.net/AMR.1060.137.

  3. Goyal P, Kumar V, Sharma P. Carboxymethylation of tamarind kernel powder. Carbohydr Polym. 2007;69:251–5. https://doi.org/10.1016/j.carbpol.2006.10.001.

    Article  CAS  Google Scholar 

  4. Khounvilay K, Sittikijyothin W. Rheological behaviour of tamarind seed gum in aqueous solutions. Food Hydrocoll. 2012;26:334–8. https://doi.org/10.1016/j.foodhyd.2011.03.019.

    Article  CAS  Google Scholar 

  5. Alpizar-Reyes E, Carrillo-Navas H, Romero-Romero R, Varela-Guerrero V, Alvarez-Ramírez J, Pérez-Alonso C. Thermodynamic sorption properties and glass transition temperature of tamarind seed mucilage (Tamarindus indica L.). Food Bioprod Process. 2017;101:166–76. https://doi.org/10.1016/j.fbp.2016.11.006.

    Article  CAS  Google Scholar 

  6. Shao H, Zhang H, Tian Y, Song Z, Lai P, Ai L. Composition and rheological properties of polysaccharide extracted from tamarind (Tamarindus indica L.) seed. Molecules. 2019;24:1–13. https://doi.org/10.3390/molecules24071218.

    Article  CAS  Google Scholar 

  7. Jang KJ, Hong YE, Moon Y, Jeon S, Angalet S, Kweon M. Exploring the applicability of tamarind gum for making gluten-free rice bread. Food Sci Biotechnol. 2018;27:1639–48. https://doi.org/10.1007/s10068-018-0416-z.

    Article  CAS  Google Scholar 

  8. Nayak AK, Pal D. Tamarind seed polysaccharide: an emerging excipient for pharmaceutical use. Indian J Pharm Educ Res. 2017;51:s136–46. https://doi.org/10.5530/ijper.51.2s.60.

    Article  CAS  Google Scholar 

  9. Sharma V, Patnaik P, Senthilguru K, Nayak SK, Syed I, Singh VK, et al. Preparation and characterization of novel tamarind gum-based hydrogels for antimicrobial drug delivery applications. Chem Pap. 2018;72:2101–13. https://doi.org/10.1007/s11696-018-0414-x.

    Article  CAS  Google Scholar 

  10. Singh V, Ali SZ. Properties of starches modified by different acids. Int J Food Prop. 2008;11:495–507. https://doi.org/10.1080/10942910802083774.

    Article  CAS  Google Scholar 

  11. Tang HB, Liu YH, Li YP, Li Q, Liu XJ. Hydroxypropylation of cross-linked sesbania gum, characterization and properties. Int J Biol Macromol. 2020;152:1010–9. https://doi.org/10.1016/j.ijbiomac.2019.10.188.

    Article  CAS  Google Scholar 

  12. Zhu JJ, Guo PP, Chen DH, Xu K, Wang PX, Guan S. Fast and excellent healing of hydroxypropyl guar gum/poly(N,N-dimethyl acrylamide) hydrogels. J Polym Sci Part B Polym Phys. 2018;56:239–47. https://doi.org/10.1002/polb.24514.

    Article  CAS  Google Scholar 

  13. Wang C, He XW, Huang Q, Luo FX, Fu X. The mechanism of starch granule reacted with OSA by phase transition catalyst in aqueous medium. Food Chem. 2013;141:3381–5. https://doi.org/10.1016/j.foodchem.2013.06.029.

    Article  CAS  Google Scholar 

  14. Hong Y, Li ZS, Gu ZB, Wang Y, Pang YS. Structure and emulsification properties of octenyl succinic anhydride starch using acid-hydrolyzed method. Starch/Stärke. 2017;68:1–9. https://doi.org/10.1002/star.201600039.

    Article  CAS  Google Scholar 

  15. Tesch S, Gerhards CH, Schubert H. Stabilization of emulsions by OSA starches. J Food Eng. 2002;54:167–74. https://doi.org/10.1016/S0260-8774(01)00206-0.

    Article  Google Scholar 

  16. Lin QQ, Liang R, Zhong F, Ye A, Singh H. Effect of degree of octenyl succinic anhydride (OSA) substitution on the digestion of emulsions and the bioaccessibility of β-carotene in OSA-modified-starch-stabilized-emulsions. Food Hydrocoll. 2018;84:303–12. https://doi.org/10.1016/j.foodhyd.2018.05.056.

    Article  CAS  Google Scholar 

  17. Sweedman MC, Tizzotti MJ, Schafer C, Gilbert RG. Structure and physicochemical properties of octenyl succinic anhydride modified starches: a review. Carbohydr Polym. 2013;92:905–20. https://doi.org/10.1016/j.carbpol.2012.09.040.

    Article  CAS  Google Scholar 

  18. Holbrey JD, Seddon KR. The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans. 1999;13:2133–9. https://doi.org/10.1039/a902818h.

    Article  Google Scholar 

  19. Ibrahim F, Moniruzzaman M, Yusup S, Uemura Y. Dissolution of cellulose with ionic liquid in pressurized cell. J Mol Liq. 2015;211:370–2. https://doi.org/10.1016/j.molliq.2015.07.041.

    Article  CAS  Google Scholar 

  20. Tang HB, Sun M, Li YP, Dong SQ. Preparation and properties of partially hydrolyzed cross-linked guar gum. Polym Bull. 2013;70:3331–46. https://doi.org/10.1007/s00289-013-1025-x.

    Article  CAS  Google Scholar 

  21. Tang HB, Tang HB, Li YP. Synthesis, optimization, characterization and property of oxidized hydroxypropyl mung bean starch. J Food Process Preserv. 2017;41:e12763. https://doi.org/10.1111/jfpp.12763.

    Article  CAS  Google Scholar 

  22. Chen LS, Fu FW, Wei VKW. On the constructions and nonlinearity of binary vector-output correlation-immune functions. J Complex. 2004;20:266–83. https://doi.org/10.1016/j.jco.2003.08.015.

    Article  CAS  Google Scholar 

  23. Sun M, Tang HB, Dong SQ, Li YP. Preparation, properties of partially hydrolized guar gum. Adv Mat Res. 2013;781–784: 1901–6. https://doi.org/10.4028/www.scientific.net/AMR.781-784.1901.

  24. Maulani RR, Fardiaz D, Kusnandar F, Sunarti TC. Characterization of chemical and physical properties of hydroxypropylated and cross-linked arrowroot (Marantha arundinacea) starch. J Eng Technol Sci. 2013;45:207–21. https://doi.org/10.5614/j.eng.technol.sci.2013.45.3.1.

    Article  Google Scholar 

  25. Tang HB, Sun PX, Li YP, Dong SQ. Esterification of sesbania gum hydrolysate in ionic liquid, optimization and characterization of its derivatives. Arab J Sci Eng. 2019;44:6381–92. https://doi.org/10.1007/s13369-019-03844-4.

    Article  CAS  Google Scholar 

  26. Zou Y, Guo J, Yin SW, Wang JM, Yang XQ. Pickering emulsion gels prepared by hydrogen-bonded zein/tannic acid complex colloidal particles. J Agric Food Chem. 2015;63:7405–14. https://doi.org/10.1021/acs.jafc.5b03113.

    Article  CAS  Google Scholar 

  27. Oliveira NM, Dourado FQ, Peres AM, Silva MV, Maia JM, Teixeira JA. Effect of guar gum on the physicochemical, thermal, rheological and textural properties of green edam cheese. Food Bioprocess Technol. 2010;4:1414–21. https://doi.org/10.1007/s11947-010-0324-6.

    Article  CAS  Google Scholar 

  28. Tang HB, Qu YF, Li YP, Dong SQ. Surface modification mechanism of cross-linking and acetylation, and their influence on characteristics of high amylose corn starch. J Food Sci. 2018;83:1533–41. https://doi.org/10.1111/1750-3841.14161.

    Article  CAS  Google Scholar 

  29. Kim HY, Jane JL, Lamsal B. Hydroxypropylation improves film properties of high amylose corn starch. Ind Crops Products. 2017;95:175–83. https://doi.org/10.1016/j.indcrop.2016.10.025.

    Article  CAS  Google Scholar 

  30. Yang LP, Zhou YB, Wu YM, Meng X, Jiang YM, Zhang HW, et al. Preparation and physicochemical properties of three types of modified glutinous rice starches. Carbohydr Polym. 2016;137:305–13. https://doi.org/10.1016/j.carbpol.2015.10.065.

    Article  CAS  Google Scholar 

  31. Dai Z. Starch granule size distribution in grains at different positions on the spike of wheat (Triticum aestivum L.). Starch/Stärke. 2009;61:582–9. https://doi.org/10.1002/star.200800112.

    Article  CAS  Google Scholar 

  32. Ma YS, Pan Y, Xie QT, Li XM, Zhang B, Chen HQ. Evaluation studies on effects of pectin with different concentrations on the pasting, rheological and digestibility properties of corn starch. Food Chem. 2019;274:319–23. https://doi.org/10.1016/j.foodchem.2018.09.005.

    Article  CAS  Google Scholar 

  33. No J, Shin M. Preparation and characteristics of octenyl succinic anhydride-modified partial waxy rice starches and encapsulated paprika pigment powder. Food Chem. 2019;295:466–74. https://doi.org/10.1016/j.foodchem.2019.05.064.

    Article  CAS  Google Scholar 

  34. Li WY, Jin AX, Liu CF, Sun RC, Zhang AP, Kennedy JF. Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst. Carbohydr Polym. 2009;78:389–95. https://doi.org/10.1016/j.carbpol.2009.04.028.

    Article  CAS  Google Scholar 

  35. Liu ZQ, Li Y, Cui FJ, Ping LF, Song JN, Ravee Y, et al. Production of octenyl succinic anhydride-modified waxy corn starch and its characterization. J Agric Food Chem. 2008;56:11499–506. https://doi.org/10.1021/jf802317q.

    Article  CAS  Google Scholar 

  36. Minnick DL, Flores RA, DeStefano MR, Scurto AM. Cellulose solubility in ionic liquid mixtures: temperature, cosolvent, and antisolvent effects. J Phys Chem B. 2016;120:7906–19. https://doi.org/10.1021/acs.jpcb.6b04309.

    Article  CAS  Google Scholar 

  37. Luan YH, Zhang JM, Zhan MS, Wu J, Zhang J, He JS. Highly efficient propionylation and butyralation of cellulose in an ionic liquid catalyzed by 4-dimethylminopyridine. Carbohydr Polym. 2013;92:307–11. https://doi.org/10.1016/j.carbpol.2012.08.111.

    Article  CAS  Google Scholar 

  38. Wang H, Williams PA, Senan C. Synthesis, characterization and emulsification properties of dodecenyl succinic anhydride derivatives of gum arabic. Food Hydrocoll. 2014;37:143–8. https://doi.org/10.1016/j.foodhyd.2013.10.033.

    Article  CAS  Google Scholar 

  39. Xu J, Zhou CW, Wang RZ, Yang L, Du SS, Wang FP, et al. Lipase-coupling esterification of starch with octenyl succinic anhydride. Carbohydr Polym. 2012;87:2137–44. https://doi.org/10.1016/j.carbpol.2011.10.035.

    Article  CAS  Google Scholar 

  40. Cizova A, Srokova I, Sasinkova V, Malovikova A, Ebringerova A. Carboxymethyl starch octenylsuccinate: microwave- and ultrasound-assisted synthesis and properties. Starch/Stärke. 2008;60:389–97. https://doi.org/10.1002/star.200800221.

    Article  CAS  Google Scholar 

  41. Alpizar-Reyes E, Carrillo-Navas H, Gallardo-Rivera R, Varela-Guerrero V, Alvarez-Ramirez J, Pérez-Alonso C. Functional properties and physicochemical characteristics of tamarind (Tamarindus indica L.) seed mucilage powder as a novel hydrocolloid. J Food Eng. 2017;209:68–75. https://doi.org/10.1016/j.jfoodeng.2017.04.021.

    Article  CAS  Google Scholar 

  42. Kaur H, Yadav S, Ahuja M, Dilbaghi N. Synthesis, characterization and evaluation of thiolated tamarind seed polysaccharide as a mucoadhesive polymer. Carbohydr Polym. 2012;90:1543–9. https://doi.org/10.1016/j.carbpol.2012.07.028.

    Article  CAS  Google Scholar 

  43. Ren L, Dong Z, Jiang M, Tong J, Zhou J. Hydrophobization of starch nanocrystals through esterification in green media. Ind Crops Products. 2014;59:115–8. https://doi.org/10.1016/j.indcrop.2014.05.014.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to people for our research support.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Tang Hongbo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hongbo, T., Manxin, W., Yanping, L. et al. Octenyl succinate hydroxypropyl acidolysis tamarind gum: synthesis, optimization, structure and properties. Polym J 55, 13–25 (2023). https://doi.org/10.1038/s41428-022-00702-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00702-3

Search

Quick links