Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Development of chiral functional materials based on natural chiral compounds

Abstract

Optically active polymers and supramolecules that form well-defined assemblies and architectures are important materials with a wide range of applications. Among the variety of chiral building blocks for the preparation of optically active functional materials, amino acids and sugars stand out because of their versatile structures and functional groups. In these chiral units, intra- and intermolecular noncovalent interactions, such as hydrogen bonding and π-stacking, play significant roles in the generation of smart functions. This review summarizes the fabrication and functions of chiral conjugated polyacetylenes and polyarylene ethynylenes and chiral supramolecules based on these natural chiral compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang K, Amin K, An Z, Cai Z, Chen H, Chen H, et al. Advanced functional polymer materials. Mater Chem Front. 2020;4:1803–915.

    Article  CAS  Google Scholar 

  2. Uyama H. Functional polymers from renewable plant oils. Polym J. 2018;50:1003–11.

    Article  CAS  Google Scholar 

  3. Leiske MN, Kempe K. A Guideline for the Synthesis of Amino-Acid-Functionalized Monomers and Their Polymerizations. Macromol Rapid Comm. 2022;43:2100615.

    Article  CAS  Google Scholar 

  4. Liu M, Zhang L, Wang T. Supramolecular Chirality in Self-Assembled Systems. Chem Rev. 2015;115:7304–97.

    Article  CAS  PubMed  Google Scholar 

  5. Sang Y, Liu M. Nanoarchitectonics through supramolecular gelation: formation and switching of diverse nanostructures. Mol Syst Des Eng. 2019;4:11–28.

    Article  CAS  Google Scholar 

  6. Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem Rev. 2016;116:13752–990.

    Article  CAS  PubMed  Google Scholar 

  7. Numata K. How to define and study structural proteins as biopolymer materials. Polym J. 2020;52:1043–56.

    Article  CAS  Google Scholar 

  8. Natta G, Pino P, Corradini P, Danusso F, Mantica E, Mazzanti G, et al. Crystalline high polymers of α-olefins. J Am Chem Soc. 1955;77:1708–10.

    Article  CAS  Google Scholar 

  9. Cheuk KKL, Li BS, Lam JWY, Xie Y, Tang BZ. Synthesis, Chain Helicity, Assembling Structure, and Biological Compatibility of Poly(phenylacetylene)s Containing l-Alanine Moieties. Macromolecules. 2008;41:5997–6005.

    Article  CAS  Google Scholar 

  10. Kakuchi R, Nagata S, Sakai R, Otsuka I, Nakade H, Satoh T, et al. Size-Specific, Colorimetric Detection of Counteranions by Using Helical Poly(phenylacetylene) Conjugated to L-Leucine Groups through Urea Acceptors. Chem Eur J. 2008;14:10259–66.

    Article  CAS  PubMed  Google Scholar 

  11. Ohsawa S, Sakurai S-i, Nagai K, Banno M, Maeda K, Kumaki J, et al. Hierarchical Amplification of Macromolecular Helicity of Dynamic Helical Poly(phenylacetylene)s Composed of Chiral and Achiral Phenylacetylenes in Dilute Solution, Liquid Crystal, and Two-Dimensional Crystal. J Am Chem Soc. 2011;133:108–14.

    Article  CAS  PubMed  Google Scholar 

  12. Sakurai S-i, Okoshi K, Kumaki J, Yashima E. Two-Dimensional Surface Chirality Control by Solvent-Induced Helicity Inversion of a Helical Polyacetylene on Graphite. J Am Chem Soc. 2006;128:5650–1.

    Article  CAS  PubMed  Google Scholar 

  13. Arias S, Freire F, Quiñoá E, Riguera R. The leading role of cation–π interactions in polymer chemistry: the control of the helical sense in solution. Polym Chem. 2015;6:4725–33.

    Article  CAS  Google Scholar 

  14. Cobos K, Rodríguez R, Quiñoá E, Riguera R, Freire F. From Sergeants and Soldiers to Chiral Conflict Effects in Helical Polymers by Acting on the Conformational Composition of the Comonomers. Angew Chem Int Ed. 2020;59:23724–30.

    Article  CAS  Google Scholar 

  15. Yin L, Duan H, Chen T, Qi D, Deng J. Amino-acid-substituted polyacetylene-based chiral core–shell microspheres: helix structure induction and application for chiral resolution and adsorption. Polym Chem. 2021;12:6404–16.

    Article  CAS  Google Scholar 

  16. Shi G, Li Y, Dai X, Shen J, Wan X. Effect of pendant stereostructure on backbone conformation and enantioseparation ability of helical polyacetylene-based chiral stationary phases. Chirality. 2022;34:574–86.

    Article  CAS  PubMed  Google Scholar 

  17. Sanda F, Terada K, Masuda T. Synthesis, Chiroptical Properties, and pH Responsibility of Aspartic Acid- and Glutamic Acid-Based Helical Polyacetylenes. Macromolecules. 2005;38:8149–54.

    Article  CAS  Google Scholar 

  18. Sanda F, Araki H, Masuda T. Synthesis of Ru–Coordinating Helical Polymer and Its Utilization as a Catalyst for Asymmetric Hydrogen-transfer Reaction. Chem Lett. 2005;34:1642–3.

    Article  CAS  Google Scholar 

  19. Ikeda A, Terada K, Shiotsuki M, Sanda F. Synthesis of polymers bearing proline moieties in the side chains and their application as catalysts for asymmetric induction. J Polym Sci Part A: Polym Chem. 2011;49:3783–96.

    Article  CAS  Google Scholar 

  20. Maeda K, Tsukui H, Matsushita Y, Yashima E. Helix Induction in Poly(phenylacetylene)s Bearing Achiral Oligoglycine Pendants by Chiral Oligopeptides in Water. Macromolecules. 2007;40:7721–6.

    Article  CAS  Google Scholar 

  21. Maeda K, Kamiya N, Yashima E. Poly(phenylacetylene)s Bearing a Peptide Pendant: Helical Conformational Changes of the Polymer Backbone Stimulated by the Pendant Conformational Change. Chem Eur J. 2004;10:4000–10.

    Article  CAS  PubMed  Google Scholar 

  22. Arias S, Freire F, Calderón M, Bergueiro J. Unexpected Chiro-Thermoresponsive Behavior of Helical Poly(phenylacetylene)s Bearing Elastin-Based Side Chains. Angew Chem Int Ed. 2017;56:11420–5.

    Article  CAS  Google Scholar 

  23. Sogawa H, Shiotsuki M, Sanda F. a-Propargyl amino acid-derived optically active novel substituted polyacetylenes: Synthesis, secondary structures, and responsiveness to ions. J Polym Sci Part A: Polym Chem. 2012;50:2008–18.

    Article  CAS  Google Scholar 

  24. Suzuki Y, Tabei J, Shiotsuki M, Inai Y, Sanda F, Masuda T. Synthesis and Helical Structure of Poly(N-butynylamide)s Having Various Side Chains, Where the Helix Is Highly Affected by the Methyl Branch and the Lactone Moiety. Macromolecules. 2008;41:1086–93.

    Article  CAS  Google Scholar 

  25. Suzuki Y, Miyagi Y, Shiotsuki M, Inai Y, Masuda T, Sanda F. Synthesis and Helical Structures of Poly(ω-alkynamide)s Having Chiral Side Chains: Effect of Solvent on Their Screw-Sense Inversion. Chem Eur J. 2014;20:15131–43.

    Article  CAS  PubMed  Google Scholar 

  26. Tabei J, Shiotsuki M, Sanda F, Masuda T. Effect of Chiral Substituents on the Secondary Structure of Poly(N-alkynylamides). Macromolecules. 2005;38:5860–7.

    Article  CAS  Google Scholar 

  27. Suzuki Y, Shiotsuki M, Sanda F, Masuda T. Chiral 1-Methylpropargyl Alcohol:  A Simple and Powerful Helical Source for Substituted Polyacetylenes. Macromolecules. 2007;40:1864–7.

    Article  CAS  Google Scholar 

  28. Prince RB, Brunsveld L, Meijer EW, Moore JS. Twist Sense Bias Induced by Chiral Side Chains in Helically Folded Oligomers. Angew Chem Int Ed. 2000;39:228–30.

    Article  CAS  Google Scholar 

  29. Zhao X, Schanze KS. Meta-Linked Poly(phenylene ethynylene) Conjugated Polyelectrolyte Featuring a Chiral Side Group:  Helical Folding and Guest Binding. Langmuir. 2006;22:4856–62.

    Article  CAS  PubMed  Google Scholar 

  30. Ikai T, Shimizu S, Kudo T, Maeda K, Kanoh S. Helical Folding of π-Conjugated Polymers Bearing Glucose-Linked Biphenyl Units in the Main Chain: Application to Circularly Polarized Luminescence Materials. Bull Chem Soc Jpn. 2017;90:910–8.

    Article  CAS  Google Scholar 

  31. Abe H, Masuda N, Waki M, Inouye M. Regulation of Saccharide Binding with Basic Poly(ethynylpyridine)s by H+-Induced Helix Formation. J Am Chem Soc. 2005;127:16189–96.

    Article  CAS  PubMed  Google Scholar 

  32. Liu R, Sogawa H, Shiotsuki M, Masuda T, Sanda F. Tyrosine-based poly(m-phenyleneethynylene-p-phenyleneethynylene)s. Helix folding and responsiveness to a base. Polymer. 2010;51:2255–63.

    Article  CAS  Google Scholar 

  33. Miyagi Y, Sogawa H, Shiotsuki M, Sanda F. Synthesis of Optically Active Conjugated Polymers Bearing m-Terphenylene Moieties by Acetylenic Coupling Polymerization: Chiral Aggregation and Optical Properties of the Product Polymers. Macromolecules. 2014;47:1594–603.

    Article  CAS  Google Scholar 

  34. Sogawa H, Miyagi Y, Shiotsuki M, Sanda F. Synthesis of Novel Optically Active Poly(phenyleneethynylene- aryleneethynylene)s Bearing Hydroxy Groups. Examination of the Chiroptical Properties and Conjugation Length. Macromolecules. 2013;46:8896–904.

    Article  CAS  Google Scholar 

  35. Sogawa H, Shiotsuki M, Hirao T, Haino T, Sanda F. Synthesis of Optically Active Poly(m-phenyleneethynylene- aryleneethynylene)s Bearing Hydroxy Groups and Examination of the Higher Order Structures. Macromolecules. 2013;46:8161–70.

    Article  CAS  Google Scholar 

  36. Sogawa H, Shiotsuki M, Matsuoka H, Sanda F. Synthesis, Chiroptical Properties, and Photoresponsiveness of Optically Active Poly(m-phenyleneethynylene)s Containing Azobenzene Moieties. Macromolecules. 2011;44:3338–45.

    Article  CAS  Google Scholar 

  37. Sogawa H, Shiotsuki M, Sanda F. Synthesis and Photoresponse of Helically Folded Poly(phenyleneethynylene)s Bearing Azobenzene Moieties in the Main Chains. Macromolecules. 2013;46:4378–87.

    Article  CAS  Google Scholar 

  38. Hashimoto A, Miyagi Y, Sogawa H, Yamamoto S, Sanda F. Synthesis and Properties of Poly(phenyleneethynylene)s Bearing Perylene Moieties at the Side Chains. Chem Lett. 2014;43:1622–4.

    Article  CAS  Google Scholar 

  39. Hashimoto A, Sogawa H, Shiotsuki M, Sanda F. Stabilization of higher-order structure of poly(phenyleneethynylene)s by metathesis polymerization at the side chains. Polymer. 2012;53:2559–66.

    Article  CAS  Google Scholar 

  40. Sotani T, Yajima T, Sogawa H, Sanda F. Synthesis of Platinum-Containing Conjugated Polymers Bearing Optically Active Amide Groups: A Mechanistic Study of Chiral Aggregation. Macromolecules. 2020;53:11077–88.

    Article  CAS  Google Scholar 

  41. Sogawa H, Terada K, Miyagi Y, Shiotsuki M, Inai Y, Masuda T, et al. Photoinduced Formation of an Azobenzene-Based CD-Active Supramolecular Cyclic Dimer. Chem Eur J. 2015;21:6747–55.

    Article  CAS  PubMed  Google Scholar 

  42. Rakotondradany F, Whitehead MA, Lebuis A-M, Sleiman HF. Photoresponsive Supramolecular Systems: Self-Assembly of Azodibenzoic Acid Linear Tapes and Cyclic Tetramers. Chem Eur J. 2003;9:4771–80.

    Article  CAS  PubMed  Google Scholar 

  43. Shimosaraya N, Sotani T, Miyagi Y, Mondarte EAQ, Suthiwanich K, Hayashi T, et al. Tyrosine-based photoluminescent diketopiperazine supramolecular aggregates. Soft Matter. 2022;18:137–45.

    Article  CAS  Google Scholar 

  44. Terada K, Sanda F, Masuda T. Polycondensation of Diketopiperazine-based Dicarboxylic Acids with Diamines and Dibromoxylenes. J Macromol Sci, Part A: Pure Appl Chem. 2007;44:789–94.

    Article  CAS  Google Scholar 

  45. Terada K, Berda EB, Wagener KB, Sanda F, Masuda T. ADMET Polycondensation of Diketopiperazine-Based Dienes. Polymerization Behavior and Effect of Diketopiperazine on the Properties of the Formed Polymers. Macromolecules. 2008;41:6041–6.

    Article  CAS  Google Scholar 

  46. Terada K, Masuda T, Sanda F. Synthesis and Secondary Structure of Polyacetylenes Carrying Diketopiperazine Moieties. The First Example of Helical Polymers Stabilized by s-cis-Amide-Based Hydrogen Bonding. Macromolecules. 2009;42:913–20.

    Article  CAS  Google Scholar 

  47. Schlatter A, Kundu MK, Woggon W-D. Enantioselective Reduction of Aromatic and Aliphatic Ketones Catalyzed by Ruthenium Complexes Attached to β-Cyclodextrin. Angew Chem Int Ed. 2004;43:6731–4.

    Article  CAS  Google Scholar 

  48. Miyoshi I, Kitamoto Y, Maeda T, Morohashi N, Hattori T. Enantioselective inclusion of pyrene-1-sulfonate salts of α-amino acids with crystals of α-cyclodextrin. Tetrahedron. 2020;76:131100.

    Article  CAS  Google Scholar 

  49. Akae Y, Sogawa H, Takata T. Evaluation of Induced Circular Dichroism via Through-Space Chirality Transfer in alpha-Cyclodextrin-Based Rotaxanes Directed toward Fine Tuning. Bull Chem Soc Jpn. 2019;92:1413–8.

    Article  CAS  Google Scholar 

  50. Akae Y, Sogawa H, Takata T. Cyclodextrin-Based [3]Rotaxane-Crosslinked Fluorescent Polymer: Synthesis and De-Crosslinking Using Size Complementarity. Angew Chem Int Ed. 2018;57:14832–6.

    Article  CAS  Google Scholar 

  51. Sogawa H, Takamatsu S, Tsutsuba T, Takata T. Nitrile N-oxide-terminated poly(γ-benzyl l-glutamate) (PBLG): synthesis and catalyst-free grafting onto polybutadiene (PBD) and natural rubber (NR). Polym J. 2020;52:1165–71.

    Article  CAS  Google Scholar 

  52. Sogawa H, Katashima T, Numata K. A covalently crosslinked silk fibroin hydrogel using enzymatic oxidation and chemoenzymatically synthesized copolypeptide crosslinkers consisting of a GPG tripeptide motif and tyrosine: control of gelation and resilience. Polym Chem. 2020;11:3152–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author deeply appreciates the encouragement and meaningful discussions of Prof. Fumio Sanda (Kansai University), Prof. Toshikazu Takata (Hiroshima University) and Prof. Keiji Numata (Kyoto University) throughout his study. The author would also like to express his appreciation to all his colleagues for their valuable contributions to this focus review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromitsu Sogawa.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sogawa, H. Development of chiral functional materials based on natural chiral compounds. Polym J 54, 1161–1169 (2022). https://doi.org/10.1038/s41428-022-00677-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00677-1

Search

Quick links