Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Alternating chain sequence weakening of interfacial molecular interactions enhances the Tg confinement effect of polymers

Abstract

Confinement alters polymer dynamics and results in a marked Tg confinement effect, i.e., a reduction in the glass-transition temperature (Tg) of a polymer under confinement. The Tg confinement effect is related to dynamic enhancement at the air interface caused by reductions in intermolecular cohesion forces at the interface. Thus, tuning molecular interactions at the interface allows modification of the Tg confinement effects of polymers. In this work, using interfacial-sensitive sum-frequency generation (SFG) spectroscopy, we demonstrated that incorporation of bulky and polar maleic anhydride (MA) into polystyrene (PSt) chains in an alternating manner, forming an alternating copolymer of P(St-alt-MA), led to reductions in π-π and dipolar interactions at the air interface relative to those in the bulk. This reduction in molecular interactions led to greater mobility enhancement at the interface compared with the sluggish dynamics in the bulk, and accordingly, the P(St-alt-MA) alternating copolymer experienced a distinctly greater Tg confinement effect. These results demonstrated the impacts of local conformations and molecular interactions at the interface on the confinement effects of polymers and reinforced the idea of effective manipulation of confined polymer dynamics by changing the packing of molecules and functional groups at the interface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alcoutlabi M, McKenna GB. Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter. 2005;17:R461–R524.

    Article  CAS  Google Scholar 

  2. Ediger MD, Forrest JA. Dynamics near free surfaces and the glass transition in thin polymer films: a view to the future. Macromolecules. 2014;47:471–8.

    Article  CAS  Google Scholar 

  3. Napolitano S, Glynos E, Tito NB. Glass transition of polymers in bulk, confined geometries, and near interfaces. Rep. Prog Phys. 2017;80:036602.

    Article  PubMed  Google Scholar 

  4. Richert R. Dynamics of nanoconfined supercooled liquids. Annu Rev Phys Chem. 2011;62:65–84.

    Article  CAS  PubMed  Google Scholar 

  5. Li B, Zhang S, Andre JS, Chen Z. Relaxation behavior of polymer thin films: effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci. 2021;120:101431.

    Article  CAS  Google Scholar 

  6. Jackson CL, McKenna GB. The glass transition of organic liquids confined to small pores. J Non Cryst Solids. 1991;131-133:221–4.

    Article  CAS  Google Scholar 

  7. Keddie JL, Jones RA, Cory R. Size-dependent depression of the glass transition temperature in polymer films. Europhys Lett. 1994;27:59.

    Article  CAS  Google Scholar 

  8. Yang Z, Fujii Y, Lee FK, Lam C-H, Tsui OK. Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science. 2010;328:1676–9.

    Article  CAS  PubMed  Google Scholar 

  9. Priestley RD, Ellison CJ, Broadbelt LJ, Torkelson JM. Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science. 2005;309:456–9.

    Article  CAS  PubMed  Google Scholar 

  10. Ellison CJ, Torkelson JM. The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater. 2003;2:695–700.

    Article  CAS  PubMed  Google Scholar 

  11. Zuo B, Zhou H, Davis MJ, Wang X, Priestley RD. Effect of local chain conformation in adsorbed nanolayers on confined polymer molecular mobility. Phys Rev Lett. 2019;122:217801.

    Article  CAS  PubMed  Google Scholar 

  12. Zuo B, Li C, Xu Q, Randazzo K, Jiang N, Wang X, et al. Ultrastable glassy polymer films with an ultradense brush morphology. ACS Nano. 2021;15:9568–76.

    Article  PubMed  Google Scholar 

  13. Xu Q, Zhu N, Fang H, Wang X, Priestley RD, Zuo B. Decoupling role of film thickness and interfacial effect on polymer thin film dynamics. ACS Macro Lett. 2020;10:1–8.

    Article  PubMed  Google Scholar 

  14. Sha Y, Li L, Wang X, Wan Y, Yu J, Xue G, et al. Growth of polymer nanorods with different core–shell dynamics via capillary force in nanopores. Macromolecules. 2014;47:8722–8.

    Article  CAS  Google Scholar 

  15. Wei W, Feng S, Zhou Q, Liang H, Long Y, Wu Q, et al. Study on glass transition and physical aging of polystyrene nanowires by differential scanning calorimetry. J Polym Res. 2017;24:1–11.

    Article  CAS  Google Scholar 

  16. Nakanishi S, Yoshikawa H, Shoji S, Sekkat Z, Kawata S. Size dependence of transition temperature in polymer nanowires. J Phys Chem B. 2008;112:3586–9.

    Article  CAS  PubMed  Google Scholar 

  17. Wang H, Chang T, Li X, Zhang W, Hu Z, Jonas AM. Scaled down glass transition temperature in confined polymer nanofibers. Nanoscale. 2016;8:14950–5.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang C, Guo Y, Priestley RD. Glass transition temperature of polymer nanoparticles under soft and hard confinement. Macromolecules. 2011;44:4001–6.

    Article  CAS  Google Scholar 

  19. Feng S, Li Z, Liu R, Mai B, Wu Q, Liang G, et al. Glass transition of polystyrene nanospheres under different confined environments in aqueous dispersions. Soft Matter. 2013;9:4614–20.

    Article  CAS  Google Scholar 

  20. Liu S, Lv M, Li H, Wang S, Feng C, Wang X, et al. Optical imaging of the molecular mobility of single polystyrene nanospheres. J Am Chem Soc. 2022;144:1267–73.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang C, Guo Y, Shepard KB, Priestley RD. Fragility of an isochorically confined polymer glass. J Phys Chem Lett. 2013;4:431–6.

    Article  CAS  PubMed  Google Scholar 

  22. Ren W, Wang Y, Chen X, Zuo B, Zhou X, Wang X. Segmental relaxation dynamics of the core and corona in a single dry micelle. Macromolecules. 2018;51:195–203.

    Article  CAS  Google Scholar 

  23. Mundra MK, Donthu SK, Dravid VP, Torkelson JM. Effect of spatial confinement on the glass-transition temperature of patterned polymer nanostructures. Nano Lett. 2007;7:713–8.

    Article  CAS  PubMed  Google Scholar 

  24. Robertson C, Hogan T, Rackaitis M, Puskas J, Wang X. Effect of nanoscale confinement on glass transition of polystyrene domains from self-assembly of block copolymers. J Chem Phys. 2010;132:104904.

    Article  CAS  PubMed  Google Scholar 

  25. Bansal A, Yang H, Li C, Cho K, Benicewicz BC, Kumar SK, et al. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater. 2005;4:693–8.

    Article  CAS  PubMed  Google Scholar 

  26. Srivastava S, Basu J. Experimental evidence for a new parameter to control the glass transition of confined polymers. Phys Rev Lett. 2007;98:165701.

    Article  CAS  PubMed  Google Scholar 

  27. Wei T, Torkelson JM. Molecular weight dependence of the glass transition temperature (Tg)-confinement effect in well-dispersed poly (2-vinyl pyridine)–silica nanocomposites: Comparison of interfacial layer t g and matrix t g. Macromolecules. 2020;53:8725–36.

    Article  CAS  Google Scholar 

  28. Rittigstein P, Torkelson JM. Polymer–nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging. J Polym Sci B Polym Phys. 2006;44:2935–43.

    Article  CAS  Google Scholar 

  29. Holt AP, Bocharova V, Cheng S, Kisliuk AM, White BT, Saito T, et al. Controlling interfacial dynamics: Covalent bonding versus physical adsorption in polymer nanocomposites. ACS Nano. 2016;10:6843–52.

    Article  CAS  PubMed  Google Scholar 

  30. Mattsson J, Forrest J, Börjesson L. Quantifying glass transition behavior in ultrathin free-standing polymer films. Phys Rev E. 2000;62:5187.

    Article  CAS  Google Scholar 

  31. Dalnoki-Veress K, Forrest J, Murray C, Gigault C, Dutcher J. Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films. Phys Rev E. 2001;63:031801.

    Article  CAS  Google Scholar 

  32. Pye JE, Roth CB. Two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films as measured by transmission ellipsometry. Phys Rev Lett. 2011;107:235701.

    Article  PubMed  Google Scholar 

  33. Ma M, Guo Y. Physical properties of polymers under soft and hard nanoconfinement: a review. Chin J Polym Sci. 2020;38:565–78.

    Article  CAS  Google Scholar 

  34. Sharp J, Forrest J. Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. Phys Rev Lett. 2003;91:235701.

    Article  CAS  PubMed  Google Scholar 

  35. Yang H, Sharp JS. Interfacial effects and the glass transition in ultrathin films of poly (tert-butyl methacrylate). Macromolecules. 2008;41:4811–6.

    Article  CAS  Google Scholar 

  36. Zuo B, Liu Y, Liang Y, Kawaguchi D, Tanaka K, Wang X. Glass transition behavior in thin polymer films covered with a surface crystalline layer. Macromolecules. 2017;50:2061–8.

    Article  CAS  Google Scholar 

  37. Zha H, Wang Q, Wang X, Cangialosi D, Zuo B. Enhanced free surface mobility facilitates the release of free-volume holes in thin-film polymer glasses. Macromolecules. 2021;54:2022–8.

    Article  CAS  Google Scholar 

  38. Chen L, Torkelson JM. Tuning the Tg-confinement effect in thin polymer films via minute levels of residual surfactant which “cap” the free surface. Polymer. 2016;87:226–35.

    Article  CAS  Google Scholar 

  39. Bäumchen O, McGraw JD, Forrest JA, Dalnoki-Veress K. Reduced glass transition temperatures in thin polymer films: Surface effect or artifact? Phys Rev Lett. 2012;109:055701.

    Article  PubMed  Google Scholar 

  40. Hao Z, Ghanekarade A, Zhu N, Randazzo K, Kawaguchi D, Tanaka K, et al. Mobility gradients yield rubbery surfaces on top of polymer glasses. Nature. 2021;596:372–6.

    Article  CAS  PubMed  Google Scholar 

  41. Tian H, Xu Q, Zhang H, Priestley RD, Zuo B. Surface dynamics of glasses. Appl Phys Rev. 2022;9:011316.

    Article  CAS  Google Scholar 

  42. Chai Y, Salez T, McGraw JD, Benzaquen M, Dalnoki-Veress K, Raphaël E, et al. A direct quantitative measure of surface mobility in a glassy polymer. Science. 2014;343:994–9.

    Article  CAS  PubMed  Google Scholar 

  43. Fakhraai Z, Forrest J. Measuring the surface dynamics of glassy polymers. Science. 2008;319:600–4.

    Article  CAS  PubMed  Google Scholar 

  44. Paeng K, Swallen SF, Ediger M. Direct measurement of molecular motion in freestanding polystyrene thin films. J Am Chem Soc. 2011;133:8444–7.

    Article  CAS  PubMed  Google Scholar 

  45. Ghanekarade A, Phan AD, Schweizer KS, Simmons DS. Nature of dynamic gradients, glass formation, and collective effects in ultrathin freestanding films. Proc Natl Acad Sci USA. 2021;118:1–8.

    Article  Google Scholar 

  46. Pye JE, Rohald KA, Baker EA, Roth CB. Physical aging in ultrathin polystyrene films: evidence of a gradient in dynamics at the free surface and its connection to the glass transition temperature reductions. Macromolecules. 2010;43:8296–303.

    Article  CAS  Google Scholar 

  47. Flier BM, Baier MC, Huber J, Müllen K, Mecking S, Zumbusch A, et al. Heterogeneous diffusion in thin polymer films as observed by high-temperature single-molecule fluorescence microscopy. J Am Chem Soc. 2012;134:480–8.

    Article  CAS  PubMed  Google Scholar 

  48. Zuo B, Liu Y, Wang L, Zhu Y, Wang Y, Wang X. Depth profile of the segmental dynamics at a poly (methyl methacrylate) film surface. Soft Matter. 2013;9:9376–84.

    Article  CAS  Google Scholar 

  49. Ogieglo W, Tempelman K, Napolitano S, Benes NE. Evidence of a transition layer between the free surface and the bulk. J Phys Chem Lett. 2018;9:1195–9.

    Article  CAS  PubMed  Google Scholar 

  50. Forrest JA, Mattsson J. Reductions of the glass transition temperature in thin polymer films: Probing the length scale of cooperative dynamics. Phys Rev E. 2000;61:R53.

    Article  CAS  Google Scholar 

  51. Kawana S, Jones R. Effect of physical ageing in thin glassy polymer films. Eur Phys J E. 2003;10:223–30.

    Article  CAS  PubMed  Google Scholar 

  52. Kawana S, Jones RA. Character of the glass transition in thin supported polymer films. Phys Rev E. 2001;63:021501.

    Article  CAS  Google Scholar 

  53. Jin K, Torkelson JM. Enhanced Tg-confinement effect in cross-linked polystyrene compared to its linear precursor: Roles of fragility and chain architecture. Macromolecules. 2016;49:5092–103.

    Article  CAS  Google Scholar 

  54. Evans CM, Deng H, Jager WF, Torkelson JM. Fragility is a key parameter in determining the magnitude of t g-confinement effects in polymer films. Macromolecules. 2013;46:6091–103.

    Article  CAS  Google Scholar 

  55. Hsu DD, Xia W, Song J, Keten S. Glass-transition and side-chain dynamics in thin films: Explaining dissimilar free surface effects for polystyrene vs poly (methyl methacrylate). ACS Macro Lett. 2016;5:481–6.

    Article  CAS  PubMed  Google Scholar 

  56. Ngai K, Jonscher A, White C. On the origin of the universal dielectric response in condensed matter. Nature. 1979;277:185–9.

    Article  CAS  Google Scholar 

  57. Ngai K, Rendell R. Explanation of mechanical and electrical relaxation due to mobile ions in a superionic glass over the range 1 Hz–20 GHz by the coupling theory. Phys Rev E. 1988;38:9987.

    Article  CAS  Google Scholar 

  58. Ngai K, Rajagopal A, Teitler SD. Slowing down of relaxation in a complex system by constraint dynamics. J Chem Phys. 1988;88:5086–94.

    Article  CAS  Google Scholar 

  59. Ngai K, Capaccioli S, Cao C, Bai H, Wang W. Quantitative explanation of the enhancement of surface mobility of the metallic glass Pd40Cu30Ni10P20 by the coupling model. J Non Cryst Solids. 2017;463:85–89.

    Article  CAS  Google Scholar 

  60. Shen YR. Surface properties probed by second-harmonic and sum-frequency generation. Nature. 1989;337:519–25.

    Article  CAS  Google Scholar 

  61. Gautam KS, Schwab AD, Dhinojwala A, Zhang D, Dougal SM, Yeganeh MS. Molecular structure of polystyrene at air/polymer and solid/polymer interfaces. Phys Rev Lett. 2000;85:3854–7.

    Article  CAS  PubMed  Google Scholar 

  62. Chen Z. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy. Prog Polym Sci. 2010;35:1376–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Walling C, Briggs ER, Wolfstirn KB. Copolymerization. Xi. Copolymerizations involving α-vinylpyridine, α-vinylthiophene, o-chlorostyrene and α-methylstyrene. J Am Chem Soc. 1948;70:1543–4.

    Article  CAS  Google Scholar 

  64. Farmer RG, Hill DJT, O’Donnell JH. Study of the role of charge-transfer complexes in some bulk-phase free-radical polymerizations. J Macromol Sci A. 1980;14:51–68.

    Article  Google Scholar 

  65. Robertson CG, Santangelo PG, Roland CM. Comparison of glass formation kinetics and segmental relaxation in polymers. J Non-Cryst Solids. 2000;275:153–9.

    Article  CAS  Google Scholar 

  66. Wang LM, Velikov V, Angell CA. Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: kinetic versus thermodynamic fragilities. J Chem Phys. 2002;117:10184–92.

    Article  CAS  Google Scholar 

  67. Wang J, Chen C, Buck SM, Chen Z. Molecular chemical structure on poly (methyl methacrylate)(PMMA) surface studied by sum frequency generation (SFG) vibrational spectroscopy. J Phys Chem B. 2001;105:12118–25.

    Article  CAS  Google Scholar 

  68. Davis F, Hodge P, Towns CR, Ali-Adib Z. Langmuir and langmuir-blodgett films of derivatives of alternating copolymers of straight-chain α-olefins and maleic anhydride. Macromolecules. 1991;24:5695–703.

    Article  CAS  Google Scholar 

  69. Gottlieb HE, Kotlyar V, Nudelman A. Nmr chemical shifts of common laboratory solvents as trace impurities. J Org Chem. 1997;62:7512–5.

    Article  CAS  PubMed  Google Scholar 

  70. Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, et al. Nmr chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics. 2010;29:2176–9.

    Article  CAS  Google Scholar 

  71. Ha NTH. Determination of triad sequence distribution of copolymers of maleic anhydride and its derivates with donor monomers by 13C NMR. Spectroscopy. Polymer. 1999;40:1081–6.

    Article  CAS  Google Scholar 

  72. Lessard B, Maric M. One-step poly (styrene-alt-maleic anhydride)-block-poly (styrene) copolymers with highly alternating styrene/maleic anhydride sequences are possible by nitroxide-mediated polymerization. Macromolecules. 2010;43:879–85.

    Article  CAS  Google Scholar 

  73. Barron PF, Hill DJT, O'Donnell JH, O’Sullivan PW. Applications of dept experiments to the carbon-13 nmr of copolymers: Poly(styrene-co-maleic anhydride) and poly(styrene-co-acrylonitrile). Macromolecules. 1984;17:1967–72.

    Article  CAS  Google Scholar 

  74. Tsuruta H, Fujii Y, Kai N, Kataoka H, Ishizone T, Doi M, et al. Local conformation and relaxation of polystyrene at substrate interface. Macromolecules. 2012;45:4643–9.

    Article  CAS  Google Scholar 

  75. Duffy DC, Davies PB, Bain CD. Surface vibrational spectroscopy of organic counterions bound to a surfactant monolayer. J Phys Chem. 1995;99:15241–6.

    Article  CAS  Google Scholar 

  76. Curtis AD, Calchera AR, Asplund MC, Patterson JE. Observation of sub-surface phenyl rings in polystyrene with vibrationally resonant sum-frequency generation. Vib Spectrosc. 2013;68:71–81.

    Article  CAS  Google Scholar 

  77. Zhang D, Dougal SM, Yeganeh MS. Effects of UV irradiation and plasma treatment on a polystyrene surface studied by IR−visible sum frequency generation spectroscopy. Langmuir. 2000;16:4528–32.

    Article  CAS  Google Scholar 

  78. Myers JN, Zhang C, Chen C, Chen Z. Influence of casting solvent on phenyl ordering at the surface of spin cast polymer thin films. J Colloid Interface Sci. 2014;423:60–66.

    Article  CAS  PubMed  Google Scholar 

  79. Hirose C, Akamatsu N, Domen K. Formulas for the analysis of the surface sfg spectrum and transformation coefficients of cartesian SFG tensor components. Appl Spectrosc. 1992;46:1051–72.

    Article  Google Scholar 

  80. Rao Y, Tao Y-S, Wang H-F. Quantitative analysis of orientational order in the molecular monolayer by surface second harmonic generation. J Chem Phys. 2003;119:5226–36.

    Article  CAS  Google Scholar 

  81. Hong Y, Li Y, Wang F, Zuo B, Wang X, Zhang L, et al. Enhanced thermal stability of polystyrene by interfacial noncovalent interactions. Macromolecules. 2018;51:5620–7.

    Article  CAS  Google Scholar 

  82. Ringwald SC, Pemberton JE. Adsorption interactions of aromatics and heteroaromatics with hydrated and dehydrated silica surfaces by Raman and FTIR spectroscopies. Environ Sci Technol. 2000;34:259–65.

    Article  CAS  Google Scholar 

  83. Hong Y, Bao S, Xiang X, Wang X. Concentration-dominated orientation of phenyl groups at the polystyrene/graphene interface. ACS Macro Lett. 2020;9:889–94.

    Article  CAS  PubMed  Google Scholar 

  84. Andre JS, Li B, Chen X, Paradkar R, Walther B, Feng C, et al. Interfacial reaction of a maleic anhydride grafted polyolefin with ethylene vinyl alcohol copolymer at the buried solid/solid interface. Polymer. 2021;212:123141.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Grant nos. 22122306, 21973083, and 52103234) and the Fundamental Research Funds of Zhejiang Sci-Tech University (21062172-Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Zuo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41428_2022_672_MOESM1_ESM.docx

Alternating Chain Sequence Weakening of Interfacial Molecular Interactions Enhances the Tg Confinement Effect of Polymers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Z., Zhu, N., Yang, Y. et al. Alternating chain sequence weakening of interfacial molecular interactions enhances the Tg confinement effect of polymers. Polym J 54, 1287–1296 (2022). https://doi.org/10.1038/s41428-022-00672-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00672-6

Search

Quick links