Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Postfunctionalization of the main chain of Poly(3-hexylthiophene) via anodic C–H phosphonylation

Abstract

Postfunctionalization of aromatic C – H bonds at the main chains of π-conjugated polymers (CPs) is ideal for tuning various functionalities of precursor CPs because aromatic C – H bonds are the most common structures in their backbone. However, C – H activation reactions available in postfunctionalization methods remain limited. Here, we expand this limitation by performing electrochemical C – H phosphonylation of the main chain of poly(3-hexylthiophene) (P3HT). The introduction of phosphonate moieties into the main chain of CPs is potentially useful for improving their processibilities and imparting sensing abilities to them. Anodic phosphonylation of P3HT was successfully achieved using trialkyl phosphite as an electrically neutral nucleophile in the presence of nonnucleophilic dopants. The chemical structures and the optoelectronic properties of phosphonylated P3HT were characterized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3

Similar content being viewed by others

References

  1. Guo X, Baumgarten M, Müllen K. Designing π-conjugated polymers for organic electronics. Prog Polym Sci. 2013;38:1832–908.

    Article  CAS  Google Scholar 

  2. Swager TM. 50th anniversary perspective: conducting/semiconducting conjugated polymers. A personal perspective on the past and the future. Macromolecules. 2017;50:4867–86.

    Article  CAS  Google Scholar 

  3. Beaujuge PM, Reynolds JR. Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev. 2010;110:268–320.

    Article  CAS  PubMed  Google Scholar 

  4. Ibanez JG, Rincón Marina E, Gutierrez-Granados S, Chahma M, Jaramillo-Quintero OA, Frontana-Uribe BA. Conducting polymers in the fields of energy, environmental remediation, and chemical–chiral sensors. Chem Rev. 2018;118:4731–816.

    Article  CAS  PubMed  Google Scholar 

  5. Gauthier MA, Gibson MI, Klok H-A. Synthesis of functional polymers by post-polymerization modification. Angew Chem Int Ed. 2009;48:48–58.

    Article  CAS  Google Scholar 

  6. Blasco E, Sims MB, Goldmann AS, Sumerlin BS, Barner-Kowollik C. 50th anniversary perspective: polymer functionalization. Macromolecules. 2017;50:5215–52.

    Article  CAS  Google Scholar 

  7. Goldmann AS, Glassner M, Inglis AJ, Barner‐Kowollik C. Post-functionalization of polymers via orthogonal ligation chemistry. Macromol Rapid Commun. 2013;34:810–49.

    Article  CAS  PubMed  Google Scholar 

  8. Günay KA, Theato P, Klok H-A. Standing on the shoulders of Hermann Staudinger: Post-polymerization modification from past to present. J Polym Sci, Part A: Polym Chem. 2013;51:1–28.

    Article  Google Scholar 

  9. Michinobu T. Adapting semiconducting polymer doping techniques to create new types of click postfunctionalization. Chem Soc Rev. 2011;40:2306–16.

    Article  CAS  PubMed  Google Scholar 

  10. Michinobu T. Click functionalization of aromatic polymers for organic electronic device applications. Macromol Chem Phys. 2015;216:1387–95.

    Article  CAS  Google Scholar 

  11. Shida N, Ninomiya K, Takigawa N, Imato K, Ooyama Y, Tomita I, et al. Diversification of conjugated polymers via postpolymerization nucleophilic aromatic substitution reactions with sulfur-, oxygen-, and nitrogen-based nucleophiles. Macromolecules. 2021;54:725–35.

    Article  CAS  Google Scholar 

  12. Creamer A, Wood CS, Howes PD, Casey A, Cong S, Marsh AV, et al. Post-polymerisation functionalisation of conjugated polymer backbones and its application in multi-functional emissive nanoparticles. Nat Commun. 2018;9:3237.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li Y, Vamvounis G, Holdcroft S. Tuning optical properties and enhancing solid-state emission of poly(thiophene)s by molecular control: a postfunctionalization approach. Macromolecules. 2002;35:6900–6.

    Article  CAS  Google Scholar 

  14. Li Y, Vamvounis G, Yu J, Holdcroft S. A novel and versatile methodology for functionalization of conjugated polymers. Transformation of Poly(3-bromo-4-hexylthiophene) via palladium-catalyzed coupling chemistry. Macromolecules. 2001;34:3130–32.

    Article  CAS  Google Scholar 

  15. Williamson JB, Lewis SE, Johnson RR, Manning IM, Leibfarth FA. C−H functionalization of commodity. Polym Angew Chem Int Ed. 2019;58:8654–68.

    Article  CAS  Google Scholar 

  16. Shin J, Chang Y, Nguyen TLT, Noh SK, Bae C. Hydrophilic functionalization of syndiotactic polystyrene via a combination of electrophilic bromination and Suzuki–Miyaura reaction. J Polym Sci, Part A: Polym Chem. 2010;48:4335–43.

    Article  CAS  Google Scholar 

  17. Lafitte B, Jannasch P. Phosphonation of polysulfones via lithiation and reaction with chlorophosphonic acid esters. J Polym Sci, Part A: Polym Chem. 2005;43:273–86.

    Article  CAS  Google Scholar 

  18. Alexandratos SD, Strand MA, Quillen DR, Walder AJ. Synthesis and characterization of bifunctional phosphinic acid resins. Macromolecules. 1985;18:829–35.

    Article  CAS  Google Scholar 

  19. Lochmann L, Fréchet JMJ. Controlled functionalization of polystyrene: introduction of reactive groups by multisite metalation with superbase and reaction with electrophiles. Macromolecules. 1996;29:1767–71.

    Article  CAS  Google Scholar 

  20. Inagi S, Fuchigami T. Electrochemical post-functionalization of conducting polymers. Macromol Rapid Commun. 2014;35:854–67.

    Article  CAS  PubMed  Google Scholar 

  21. Kurioka T, Inagi S. Electricity-driven post-functionalization of conducting polymers. Chem Rec. 2021;21:2107–19.

    Article  CAS  PubMed  Google Scholar 

  22. Kurioka T, Nishiyama H, Tomita I, Inagi S. Improvement of current efficiency in anodic chlorination of Poly(3-hexylthiophene) by using a boron trifluoride-diethyl ether complex. ChemElectroChem. 2018;5:753–55.

    Article  CAS  Google Scholar 

  23. Shida N, Okazaki D, Kurioka T, Nishiyama H, Seferos DS, Tomita I, et al. Anodic chlorination of selenophene-containing polymers: reaction efficiency and selective reaction of single segment in rod−rod diblockcopolymer. ChemElectroChem. 2017;4:1824–7.

    Article  CAS  Google Scholar 

  24. Hayashi S, Inagi S, Hosaka K, Fuchigami T. Post-functionalization of poly(3-hexylthiophene) via anodic chlorination. Synth Met. 2009;159:1792–95.

    Article  CAS  Google Scholar 

  25. Kurioka T, Komamura T, Shida N, Hayakawa T, Tomita I, Inagi S. Ordered-structure-induced electrochemical post-functionalization of Poly(3-(2-ethylhexyl)thiophene). Macromol Chem Phys. 2022;223:2100435.

    Article  CAS  Google Scholar 

  26. Hayashi S, Inagi S, Fuchigami T. Efficient electrochemical polymer halogenation using a thin-layered cell. Polym Chem. 2011;2:1632–37.

    Article  CAS  Google Scholar 

  27. Hayashi S, Inagi S, Fuchigami T. Synthesis of 9-substituted fluorene copolymers via chemical and electrochemical polymer reaction and their optoelectronic properties. Macromolecules. 2009;42:3755–60.

    Article  CAS  Google Scholar 

  28. Qi Z, Rees NG, Pickup PG. Electrochemically induced substitution of polythiophenes and polypyrrole. Chem Mater. 1996;8:701–7.

    Article  CAS  Google Scholar 

  29. Fabre B, Simonet J. Post-polymerization electrochemical functionalization of a conducting polymer: anodic cyanation of poly(p-dimethoxybenzene). J Electroanal Chem. 1996;416:187–89.

    Article  CAS  Google Scholar 

  30. Fabre B, Kanoufi F, Simonet J. Electrochemical and XPS investigations of the anodic substitution of an electronic conducting polymer. Cyanation of poly[(1,4-dimethoxybenzene)-co-(3-methylthiophene)]. J Electroanal Chem. 1997;434:225–34.

    Article  CAS  Google Scholar 

  31. Kurioka T, Shida N, Tomita I, Inagi S. Post-functionalization of aromatic C–H bonds at the main chains of π-conjugated polymers via anodic chlorination facilitated by lewis acids. Macromolecules. 2021;54:1539–47.

    Article  CAS  Google Scholar 

  32. Inagi S, Hosaka K, Hayashi S, Fuchigami T. Solid-phase halogenation of a conducting polymer film via electrochemical polymer reaction. J Electrochem Soc. 2010;157:E88.

    Article  CAS  Google Scholar 

  33. Inagi S, Koseki K, Hayashi S, Fuchigami T. Electrochemical tuning of the optoelectronic properties of a fluorene-based conjugated polymer. Langmuir. 2010;26:18631–33.

    Article  CAS  PubMed  Google Scholar 

  34. Song C, Swager TM. Conducting polymers containing peri-xanthenoxanthenes via oxidative cyclization of binaphthols. Macromolecules. 2009;42:1472–75.

    Article  CAS  Google Scholar 

  35. Li Y, Kamata K, Asaoka S, Yamagishi T, Iyoda T. Efficient anodic pyridination of poly(3-hexylthiophene) toward post-functionalization of conjugated polymers. Org Biomol Chem. 2003;1:1779–84.

    Article  CAS  PubMed  Google Scholar 

  36. Effenberger F, Kottmann H. Oxidative phosphonylation of aromatic compounds. Tetrahedron. 1985;41:4171–82.

    Article  CAS  Google Scholar 

  37. Yuan Y, Qiao J, Cao Y, Tang J, Wang M, Ke G, et al. Exogenous-oxidant-free electrochemical oxidative C–H phosphonylation with hydrogen evolution. Chem Commun. 2019;55:4230–33.

    Article  CAS  Google Scholar 

  38. Long H, Huang C, Zheng Y-T, Li Z-Y, Jie L-H, Song J, et al. Electrochemical C–H phosphorylation of arenes in continuous flow suitable for late-stage functionalization. Nat Commun. 2021;12:6629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deng Y, You S, Ruan M, Wang Y, Chen Z, Yang G, et al. Electrochemical regioselective phosphorylation of nitrogen-containing heterocycles and related derivatives. Adv Synth Catal. 2021;363:464–69.

    Article  Google Scholar 

  40. Guo X, Qin C, Cheng Y, Xie Z, Geng Y, Jing X, et al. White electroluminescence from a phosphonate-functionalized single-polymer system with electron-trapping effect. Adv Mater. 2009;21:3682–88.

    Article  CAS  Google Scholar 

  41. Meng B, Fu Y, Xie Z, Liu J, Wang L. Phosphonate-functionalized donor polymer as an underlying interlayer to improve active layer morphology in polymer solar cells. Macromolecules. 2014;47:6246–51.

    Article  CAS  Google Scholar 

  42. Wu C-S, Chou C-Y, Chen Y. Copolyfluorenes containing partially hydrolyzed phosphonate pendant groups: synthesis, characterization and application as electron injection layers for enhanced electroluminescence of PLEDs. J Mater Chem C. 2014;2:6665–74.

    Article  CAS  Google Scholar 

  43. Hopkins J, Fidanovski K, Travaglini L, Ta D, Hook J, Wagner P, et al. A phosphonated Poly(ethylenedioxythiophene) derivative with low oxidation potential for energy-efficient bioelectronic devices. Chem Mater. 2022;34:140–51.

    Article  CAS  Google Scholar 

  44. Abe Y, Amaya T, Inada Y, Hirao T. Characterization of self-doped conducting polyanilines bearing phosphonic acid and phosphonic acid monoester. Synth Met. 2014;197:240–45.

    Article  CAS  Google Scholar 

  45. Amaya T, Sugihara R, Hata D, Hirao T. Self-doped polyaniline derived from poly(2-methoxyaniline-5-phosphonic acid) and didodecyldimethylammonium salt. RSC Adv. 2016;6:22447–52.

    Article  CAS  Google Scholar 

  46. Amaya T, Kurata I, Inada Y, Hatai T, Hirao T. Synthesis of phosphonic acid ring-substituted polyanilines via direct phosphonation to polymer main chains. RSC Adv. 2017;7:39306–13.

    Article  CAS  Google Scholar 

  47. Fuji K, Tamba S, Shono K, Sugie A, Mori A. Murahashi coupling polymerization: Nickel(II)–N-Heterocyclic carbene complex-catalyzed polycondensation of organolithium species of (Hetero)arenes. J Am Chem Soc. 2013;135:12208–11.

    Article  CAS  PubMed  Google Scholar 

  48. Lilley M, Mambwe B, Jackson RFW, Muimo R. 4-Phosphothiophen-2-yl alanine: a new 5-membered analogue of phosphotyrosine. Chem Commun. 2014;50:9343–45.

    Article  CAS  Google Scholar 

  49. Tanaka S, Rosli SKB, Takada K, Taniai N, Yoshitomi T, Ando H, et al. Effects of bromination of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells. RSC Adv. 2017;7:46874–80.

    Article  CAS  Google Scholar 

  50. Koo B, Sletten EM, Swager TM. Functionalized poly(3-hexylthiophene)s via lithium–bromine exchange. Macromolecules. 2015;48:229–35.

    Article  CAS  PubMed  Google Scholar 

  51. Frantz R, Durand J-O, Lanneau GF. Substituent effects of phosphonate groups electronic repartition of π-conjugated ferrocene analogues of stilbene. J Organomet Chem. 2004;689:1867–71.

    Article  CAS  Google Scholar 

  52. Yebeutchou RM, Tancini F, Demitri N, Geremia S, Mendichi R, Dalcanale E. Host–guest driven self-assembly of linear and star supramolecular. Polym Angew Chem Int Ed. 2008;47:4504–08.

    Article  CAS  Google Scholar 

  53. Amaya T, Abe Y, Hirao T. Deprotonation-induced efficient delocalization of polaron in self-doped Poly(anilinephosphonic acid). Macromolecules. 2014;47:8115–18.

    Article  CAS  Google Scholar 

  54. Wu C-S, Su H-C, Chen Y. Synthesis and chemosensory application of water-soluble polyfluorenes containing carboxylated groups. Org Biomol Chem. 2014;12:5682–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Kakenhi Grants-in-Aid (JP19J23415 and JP20H02796) from the Japan Society for the Promotion of Science (JSPS) and a Support for Tokyo Tech Advanced Researchers [STAR] grant funded by the Tokyo Institute of Technology Fund (Tokyo Tech Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Inagi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taniguchi, K., Kurioka, T., Shida, N. et al. Postfunctionalization of the main chain of Poly(3-hexylthiophene) via anodic C–H phosphonylation. Polym J 54, 1171–1178 (2022). https://doi.org/10.1038/s41428-022-00671-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00671-7

Search

Quick links