Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis of polycarbonates and polycarbonate/polyester copolymers through an ester-carbonate exchange reaction

Abstract

We describe the synthesis of polycarbonate by means of the polycondensation of diol formate and dialkyl carbonate through an ester-carbonate exchange reaction. The reaction of dodecane-1,12-diol formate (1a) and dipropyl carbonate (2e) in the presence of 5 mol%, compared to 1a, potassium tert-butoxide (tBuOK) in diglyme at 120 °C under reduced pressure (90–100 Torr) afforded high-molar-mass polycarbonate (PC). When polycondensation of 1a and diethyl carbonate (2d) was conducted in the presence of poly(1,12-dodecamethylene isophthalate) (PEs) in toluene at 60 °C under reduced pressure, both the synthesis of PC and the exchange reaction between the PC and PEs backbones proceeded simultaneously, and a statistical copolymer of PC and PEs was obtained. The composition of PC and PEs in the copolymer could be arbitrarily altered by changing the feed ratio of the monomers to PEs. The crystallization temperature (Tc) of the copolymer increased linearly with increasing PC content in the copolymer from −10.8 °C (100% PEs) to 47.3 °C (100% PC).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brunelle DJ Polycarbonates. In: Mark HF, editor. Encyclopedia of polymer science and technology, 4th Edition, vol. 10. Hoboken: John Wiley & Sons, Inc.; 2014. p. 354–85.

  2. Diepens M, Gijsman P. Photodegradation of bisphenol a polycarbonate. Polym Degrad Stab. 2007;92:397–406.

    Article  CAS  Google Scholar 

  3. Levchik SV, Weil ED. Overview of recent developments in the flame retardancy of polycarbonates. Polym Int. 2005;54:981–98.

    Article  CAS  Google Scholar 

  4. Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic polycarbonates from cyclic carbonate monomers and their application as biomaterials. Chem Rev. 2021;121:10865–907.

    Article  CAS  PubMed  Google Scholar 

  5. Artham T, Doble M. Biodegradation of aliphatic and aromatic polycarbonates. Macromol Biosci. 2008;8:14–24.

    Article  CAS  PubMed  Google Scholar 

  6. Feng J, Zhuo R-X, Zhang X-Z. Construction of functional aliphatic polycarbonates for biomedical applications. Prog Polym Sci. 2012;37:211–36.

    Article  CAS  Google Scholar 

  7. Brunelle DJ, Shannon TG. Preparation and polymerization of bisphenol a cyclic oligomeric carbonates. Macromolecules 1991;24:3035–44.

    Article  CAS  Google Scholar 

  8. Brunelle DJ, Boden EP, Shannon TG. Remarkably selective formation of macrocyclic aromatic carbonates: Versatile new intermediates for the synthesis of aromatic polycarbonates. J Am Chem Soc. 1990;112:2399–402.

    Article  CAS  Google Scholar 

  9. Brunelle DJ, Shannon TG. Preparation of functionalized polycarbonates via ring-opening polymerization of diverse mixed oligomeric cyclic carbonates. Makromol Chem Macromol Symp. 1991;42-43:155–66.

    Article  Google Scholar 

  10. Brunelle DJ, Krabbenhoft HO, Bonauto DK. Preparation of crystalline and solvent-resistant polycarbonates via ring-opening polymerization of cyclic oligomers. Macromol Symp. 1994;77:117–24.

    Article  CAS  Google Scholar 

  11. Hodge P. Entropically driven ring-opening polymerization of strainless organic macrocycles. Chem Rev. 2014;114:2278–312.

    Article  CAS  PubMed  Google Scholar 

  12. Brunelle DJ. Advances in polycarbonates: An overview. Advances in polycarbonates. 898. Washington, D. C.: American Chemical Society; 2005. p. 1–5.

    Chapter  Google Scholar 

  13. Kricheldorf HR, Böhme S, Schwarz G, Schultz C-L. Cyclic polycarbonates by polycondensation of bisphenol a with triphosgene. Macromolecules 2004;37:1742–8.

    Article  CAS  Google Scholar 

  14. Haba O, Itakura I, Ueda M, Kuze S. Synthesis of polycarbonate from dimethyl carbonate and bisphenol-a through a non-phosgene process. J Polym Sci, Part A: Polym Chem. 1999;37:2087–93.

    Article  CAS  Google Scholar 

  15. Zhu W, Huang X, Li C, Xiao Y, Zhang D, Guan G. High-molecular-weight aliphatic polycarbonates by melt polycondensation of dimethyl carbonate and aliphatic diols: Synthesis and characterization. Polym Int. 2011;60:1060–7.

    Article  CAS  Google Scholar 

  16. Sweileh BA, Al-Hiari YM, Kailani MH, Mohammad HA. Synthesis and characterization of polycarbonates by melt phase interchange reactions of alkylene and arylene diacetates with alkylene and arylene diphenyl dicarbonates. Molecules 2010;15:3661–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Z, Yang X, Liu S, Hu J, Zhang H, Wang G. One-pot synthesis of high-molecular-weight aliphatic polycarbonates via melt transesterification of diphenyl carbonate and diols using Zn(OAc)2 as a catalyst. RSC Adv. 2015;5:87311–9.

    Article  CAS  Google Scholar 

  18. Katoh T, Ogawa Y, Ohta Y, Yokozawa T. Synthesis of polyester by means of polycondensation of diol ester and dicarboxylic acid ester through ester–ester exchange reaction. J Polym Sci. 2021;59:787–97.

    Article  CAS  Google Scholar 

  19. Ganguly A, Channe P, Jha R, Mitra S, Saha S. Review on transesterification in polycarbonate–poly(butylene terephthalate) blend. Polym Eng Sci. 2021;61:650–61.

    Article  CAS  Google Scholar 

  20. Montaudo G, Puglisi C, Samperi F. Copolymer composition: A key to the mechanisms of exchange in reactive polymer blending. In: Fakirov S, editor. Transreactions in condensation polymers. Weinheim: Wiley-VCH; 1999. p. 159–93.

    Chapter  Google Scholar 

  21. Porter RS, Jonza JM, Kimura M, Desper CR, George ER. Polyesters ii: A review of phase behavior in binary blends: Amorphous, crystalline, liquid crystalline, and on transreaction. Polym Eng Sci. 1989;29:55–62.

    Article  CAS  Google Scholar 

  22. Liu Y, Ranucci E, Söderqvist Lindblad M, Albertsson A-C. New biodegradable polymers from renewable sources: Polyester-carbonates based on 1,3-propylene-co-1,4-cyclohexanedimethylene succinate. J Polym Sci, Part A: Polym Chem. 2001;39:2508–19.

    Article  CAS  Google Scholar 

  23. Liang J, Ye S, Wang S, Xiao M, Meng Y. Design and structure of catalysts: Syntheses of carbon dioxide-based copolymers with cyclic anhydrides and/or cyclic esters. Polym J. 2021;53:3–27.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JST-Mirai Program Grant Number JPMJMI18A2, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Yokozawa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katoh, T., Saso, M., Ohta, Y. et al. Synthesis of polycarbonates and polycarbonate/polyester copolymers through an ester-carbonate exchange reaction. Polym J 54, 1063–1069 (2022). https://doi.org/10.1038/s41428-022-00663-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00663-7

Search

Quick links