Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Macroscale double networks: highly dissipative soft composites

Abstract

Hydrogels contain large amounts of water, making them useful in biomaterial applications. However, their inherent softness prevents their direct use in load-bearing applications. By incorporating toughening mechanisms through the double network concept, the mechanical properties of hydrogels have been greatly improved. In this Focus Review, our goal is to consider recent attempts to achieve hydrogel composites with further improved strength and toughness that could lead to the development of prosthetic biomaterials. We outline the way in which the double network concept improves the mechanical properties of gels and the specific mechanical traits that are enabled. We next review the current literature on soft composites, noting that the reinforcement mechanisms often differ from the double network concept, and summarize the types of properties that these materials can achieve. We also highlight the difficulties of working with hydrogels versus simple elastomers. Finally, we look at a recent subset of materials that utilize a mechanism analogous to the double network concept to achieve toughening on the macroscale. Macroscale double networks provide a unique opportunity to improve the mechanical properties of all soft materials for a wide range of applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ritchie RO. The conflicts between strength and toughness. Nat Mater. 2011;10:817–22.

    Article  CAS  PubMed  Google Scholar 

  2. Fratzl P, Weinkamer R. Nature’s hierarchical materials. Prog Mater Sci. 2007;52:1263–334.

    Article  CAS  Google Scholar 

  3. Kannus P. Scand. J Med Sci Sport. 2000;10:312–20.

    CAS  Google Scholar 

  4. Rousseau M, Meibom A, Gèze M, Bourrat X, Angellier M, Lopez E. Dynamics of sheet nacre formation in bivalves. J Struct Biol. 2009;165:190–5.

    Article  CAS  PubMed  Google Scholar 

  5. Woo SL-Y, Abramowitch SD, C Loh, John, Musahl V, Wang JH-C. In Funct. Tissue Eng., 2003, pp. 17–34.

  6. Race A, Amis AA. The mechanical properties of the two bundles of the human posterior cruciate ligament. J Biomech. 1994;27:13–24.

    Article  CAS  PubMed  Google Scholar 

  7. Barthelat F. Nacre from mollusk shells: a model for high-performance structural materials. Bioinspir Biomim. 2010;5:035001.

    Article  PubMed  CAS  Google Scholar 

  8. Almqvist N, Thomson NH, Smith BL, Stucky GD, Morse DE, Hansma PK. Methods for fabricating and characterizing a new generation of biomimetic materials. Mater Sci Eng C. 1999;7:37–43.

    Article  Google Scholar 

  9. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997;276:1109–12.

    Article  CAS  PubMed  Google Scholar 

  10. Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, et al. Dietary antioxidants and age-related maculopathy: the Blue Mountains Eye Study. Nature. 1999;399:761–7.

    Article  CAS  Google Scholar 

  11. Thompson JB, Kindt JH, Drake B, Hansma HG, Morse DE, Hansma PK. Bone indentation recovery time correlates with bond reforming time. Nature. 2001;414:773–6.

    Article  CAS  PubMed  Google Scholar 

  12. Fantner GE, Oroudjev E, Schitter G, Golde LS, Thurner P, Finch MM, et al. Sacrificial bonds and hidden length: unraveling molecular mesostructures in tough materials. Biophys J. 2006;90:1411–8.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft materials by design: unconventional polymer networks give extreme properties. Chem Rev. 2021;121:4309–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 2020;12:735.

    Article  CAS  PubMed Central  Google Scholar 

  15. Mascarenhas R, MacDonald PBP. Anterior cruciate ligament reconstruction: a look at prosthetics-past, present and possible future. McGill J Med MJM. 2008;11:29–37.

    PubMed  Google Scholar 

  16. Corner EM. Notes of a case illustrative of an artificial anterior crucial ligament, demonstrating the action of that ligament. Proc R Soc Med. 1914;7:120–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jenkins DHR. The repair of cruciate ligaments with flexible carbon fibre. A longer term study of the induction of new ligaments and of the fate of the implanted carbon. J Bone Jt Surg. 1978;60-B:520–2.

    Article  CAS  Google Scholar 

  18. Scharling M. Replacement of the anterior cruciate ligament with a polyethylene prosthetic ligament. Acta Orthop. 1981;52:575–8.

    Article  CAS  Google Scholar 

  19. Gong JP. Why are double network hydrogels so tough. Soft Matter. 2010;6:2583.

    Article  CAS  Google Scholar 

  20. Creton C. 50th anniversary perspective: networks and gels: soft but dynamic and tough. Macromolecules. 2017;50:8297–316.

    Article  CAS  Google Scholar 

  21. Gong JP, Katsuyama Y, Kurokawa T, Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003;15:1155–8.

    Article  CAS  Google Scholar 

  22. Okumura Y, Ito K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater. 2001;13:485–7.

    Article  CAS  Google Scholar 

  23. Noda Y, Hayashi Y, Ito K. From topological gels to slide‐ring materials. J Appl Polym Sci. 2014;131:1.

    Article  CAS  Google Scholar 

  24. Liu C, Kadono H, Mayumi K, Kato K, Yokoyama H, Ito K. Unusual fracture behavior of slide-ring gels with movable cross-links. ACS Macro Lett. 2017;6:1409–13.

    Article  CAS  PubMed  Google Scholar 

  25. Haraguchi K, Takeshisa T. Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater. 2002;14:1120.

    Article  CAS  Google Scholar 

  26. Sun J-Y, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, et al. Highly stretchable and tough hydrogels. Nature. 2012;489:133–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun TL, Kurokawa T, Kuroda S, Bin Ihsan A, Akasaki T, Sato K, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater. 2013;12:932–7.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang HJ, Sun TL, Zhang AK, Ikura Y, Nakajima T, Nonoyama T, et al. Tough Physical Double-Network Hydrogels Based on Amphiphilic Triblock Copolymers. Adv Mater 2016;28:4884–90.

    Article  CAS  PubMed  Google Scholar 

  29. Haque MA, Kurokawa T, Gong JP. Super tough double network hydrogels and their application as biomaterials. Polymer. 2012;53:1805–22.

    Article  CAS  Google Scholar 

  30. Nonoyama T, Gong JP. Tough double network hydrogel and its biomedical applications. Annu Rev Chem Biomol Eng. 2021;12:393–410.

    Article  CAS  PubMed  Google Scholar 

  31. Nakajima T, Sato H, Zhao Y, Kawahara S, Kurokawa T, Sugahara K, et al. A universal molecular stent method to toughen any hydrogels based on double network concept. Adv Funct Mater. 2012;22:4426–32.

    Article  CAS  Google Scholar 

  32. Nakajima T, Ozaki Y, Namba R, Ota K, Maida Y, Matsuda T, et al. Tough double-network gels and elastomers from the nonprestretched first network. ACS Macro Lett. 2019;8:1407–12.

    Article  CAS  PubMed  Google Scholar 

  33. Matsuda T, Nakajima T, Fukuda Y, Hong W, Sakai T, Kurokawa T, et al. Yielding criteria of double network hydrogels. Macromolecules. 2016;49:1865–72.

    Article  CAS  Google Scholar 

  34. Nakajima T, Kurokawa T, Ahmed S, Wu WL, Gong JP. Characterization of internal fracture process of double network hydrogels under uniaxial elongation. Soft Matter. 2013;9:1955–66.

    Article  CAS  Google Scholar 

  35. Khang D-YY, Jiang H, Huang Y, Rogers JA. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science. 2006;311:208–12.

    Article  CAS  PubMed  Google Scholar 

  36. Kim D-H, Ghaffari R, Lu N, Rogers JA. Flexible and stretchable electronics for biointegrated devices. Annu Rev Biomed Eng. 2012;14:113–28.

    Article  CAS  PubMed  Google Scholar 

  37. Bharambe V, Parekh DP, Ladd C, Moussa K, Dickey MD, Adams JJ. Addit Manuf. 2017;18:221–7.

  38. Bartlett MD, Fassler A, Kazem N, Markvicka EJ, Mandal P, Majidi C. Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv Mater. 2016;28:3726–31.

    Article  CAS  PubMed  Google Scholar 

  39. Dickey MD. Stretchable and soft electronics using liquid metals. Adv Mater. 2017;29:1606425.

    Article  CAS  Google Scholar 

  40. Style RW, Boltyanskiy R, Allen B, Jensen KE, Foote HP, Wettlaufer JS, et al. Stiffening solids with liquid inclusions. Nat Phys. 2015;11:82–87.

    Article  CAS  Google Scholar 

  41. Kazem N, Bartlett MD, Majidi C. Extreme toughening of soft materials with liquid metal. Adv Mater. 2018;30:1706594.

    Article  CAS  Google Scholar 

  42. Buckner TL, Yuen MC, Kim SY, Kramer‐Bottiglio R. Enhanced variable stiffness and variable stretchability enabled by phase‐changing particulate additives. Adv Funct Mater. 2019;29:1903368.

    Article  CAS  Google Scholar 

  43. Shan W, Lu T, Majidi C. Soft-matter composites with electrically tunable elastic rigidity. Smart Mater Struct 2013;22:085005.

    Article  CAS  Google Scholar 

  44. Schubert BE, Floreano D. Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly(dimethylsiloxane) (PDMS). RSC Adv. 2013;3:24671.

    Article  CAS  Google Scholar 

  45. Tonazzini A, Mintchev S, Schubert B, Mazzolai B, Shintake J, Floreano D. Variable stiffness fiber with self-healing capability. Adv Mater. 2016;28:10142–8.

    Article  CAS  PubMed  Google Scholar 

  46. Kazem N, Hellebrekers T, Majidi C. Soft multifunctional composites and emulsions with liquid metals. Adv Mater. 2017;29:1605985.

    Article  CAS  Google Scholar 

  47. Agrawal A, Rahbar N, Calvert PD. Strong fiber-reinforced hydrogel. Acta Biomater. 2013;9:5313–8.

    Article  CAS  PubMed  Google Scholar 

  48. Lin S, Cao C, Wang Q, Gonzalez M, Dolbow JE, Zhao X. Design of stiff, tough and stretchy hydrogel composites via nanoscale hybrid crosslinking and macroscale fiber reinforcement. Soft Matter. 2014;10:7519–27.

  49. Illeperuma WRKK, Sun J, Suo Z, Vlassak JJ. Fiber-reinforced tough hydrogels. Extrem Mech Lett. 2014;1:90–6.

    Article  Google Scholar 

  50. Feng X, Ma Z, MacArthur JV, Giuffre CJ, Bastawros AF, Hong W. A highly stretchable double-network composite. Soft Matter. 2016;12:8999–9006.

    Article  CAS  PubMed  Google Scholar 

  51. King DR, Okumura T, Takahashi R, Kurokawa T, Gong JP. Macroscale double networks: design criteria for optimizing strength and toughness. ACS Appl Mater Interfaces. 2019;11:35343–53.

    Article  CAS  PubMed  Google Scholar 

  52. Cooper CB, Joshipura ID, Parekh DP, Norkett J, Mailen R, Miller VM, et al. Toughening stretchable fibers via serial fracturing of a metallic core. Sci Adv. 2019;5:4600. eaat4600

    Article  CAS  Google Scholar 

  53. Tao Z, Fan H, Huang J, Sun T, Kurokawa T, Gong JP. Fabrication of tough hydrogel composites from photoresponsive polymers to show double-network effect. ACS Appl Mater Interfaces. 2019;11:37139–46.

    Article  CAS  PubMed  Google Scholar 

  54. Zhu F, Cheng L, Wang ZJ, Hong W, Wu ZL, Yin J, et al. 3D-printed ultratough hydrogel structures with titin-like domains. ACS Appl Mater Interfaces. 2017;9:11363–7.

    Article  CAS  PubMed  Google Scholar 

  55. Zou S, Therriault D, Gosselin FP. Spiderweb-inspired, transparent, impact-absorbing composite. Cell Rep. Phys Sci. 2020;1:100240.

    Article  Google Scholar 

  56. Zou S, Therriault D, Gosselin FP. Toughening elastomers via microstructured thermoplastic fibers with sacrificial bonds and hidden lengths. Extrem Mech Lett. 2021;43:101208.

    Article  CAS  Google Scholar 

  57. Okumura T, Takahashi R, Hagita K, King DR, Gong JP. Improving the strength and toughness of macroscale double networks by exploiting Poisson’s ratio mismatch. Sci Rep. 2021;11:13280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tauber J, Dussi S, van der Gucht J. Microscopic insights into the failure of elastic double networks. Phys Rev Mater. 2020;4:063603.

    Article  CAS  Google Scholar 

  59. Tauber J, Rovigatti L, Dussi S, van der Gucht J. Sharing the load: stress redistribution governs fracture of polymer double networks. Macromolecules. 2021;54:8563–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Takahashi R, Sun TL, Saruwatari Y, Kurokawa T, King DR, Gong JP. Creating stiff, tough, and functional hydrogel composites with low-melting-point alloys. Adv Mater. 2018;30:1706885.

    Article  CAS  Google Scholar 

  61. Hua M, Wu S, Ma Y, Zhao Y, Chen Z, Frenkel I, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature. 2021;590:594–9.

    Article  CAS  PubMed  Google Scholar 

  62. Park N, Kim J. Anisotropic hydrogels with a multiscale hierarchical structure exhibiting high strength and toughness for mimicking tendons. ACS Appl Mater Interfaces. 2022;14:4479–89.

    Article  CAS  PubMed  Google Scholar 

  63. Feng X, Ma Z, MacArthur JV, Hong W. Magnetic double-network composite capable of large recoverable deformation. Soft Matter. 2021;17:554–62.

    Article  CAS  PubMed  Google Scholar 

  64. Liang X, Fu H, Crosby AJ. Phase-transforming metamaterial with magnetic interactions. Proc Natl Acad Sci. 2022;119:e2118161119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

DRK would like to acknowledge financial support from Grant-in-Aid for Scientific Research Nos. 17H06144 and 20K20193 from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. King.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, D.R. Macroscale double networks: highly dissipative soft composites. Polym J 54, 943–955 (2022). https://doi.org/10.1038/s41428-022-00646-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00646-8

Search

Quick links