Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis of a fire-retardant and high Tg biobased polyester from 2,5-furandicarboxylic acid

Abstract

A biobased diol (BDBE) is synthesized from vanillin, guaiacol, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) to generate a series of fire-retardant polyesters (PECBFs) via melt polymerization with ethylene glycol (EG), 1,4-cyclohexanedimethanol (CHDM), and 2,5-furandicarboxylic acid (FDCA). The chemical structure, sequence distribution, and molecular weights of the obtained polyesters are confirmed by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The results show that BDBE units contribute positively to the high glass transition temperature (Tg) and fire retardancy, while the CHDM moiety provides flexibility and chain propagation activity. As the content of BDBE is increased from 0 to 25%, the Tg of PECBFs increases from 82 to 95 °C, and the limiting oxygen index (LOI) increases from 22.4 to 27.5%. In the UL-94 combustion test, when BDBE units are more than 15%, the samples almost self-extinguish immediately once the flame is moved away. Their mechanical properties are also investigated, and their tensile modulus is stabilized between 1.7 and 1.8 GPa, while the elongation at break ranges from 5 to 56%. Biobased polyesters demonstrating satisfactory properties are reported in this work.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gandini A, Lacerda TM. From monomers to polymers from renewable resources: recent advances. Prog Polym Sci. 2015;48:1–39.

    Article  CAS  Google Scholar 

  2. Iwata T. ChemInform abstract: biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem. 2015;54:3210–5.

    Article  CAS  Google Scholar 

  3. Guo B, Chen Y, Lei Y, Zhang L, Zhou WY, Rabie ABM, et al. Biobased poly(propylene sebacate) as shape memory polymer with tunable switching temperature for potential biomedical applications. Biomacromolecules. 2011;12:1312–21.

    Article  CAS  PubMed  Google Scholar 

  4. Beardslee T, Picataggio S. Bio-based adipic acid from renewable oils. Lipid Tech. 2012;24:223–5.

    Article  CAS  Google Scholar 

  5. Wu H, Qiu Z. A comparative study of crystallization, melting behavior, and morphology of biodegradable poly(ethylene adipate) and poly(ethylene adipate-co-5 mol% ethylene succinate). Ind Eng Chem Res. 2012;51:13323–8.

    Article  CAS  Google Scholar 

  6. Ahn JH, Seo H, Park W, Seok J, Lee JA, Kim WJ, et al. Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase. Nat Commun. 2020;11:1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kong X, Qi H, Curtis JM. Synthesis and characterization of high-molecular weight aliphatic polyesters from monomers derived from renewable resources. J Appl Polym Sci. 2014;131:40579.

    Article  Google Scholar 

  8. Wang JG, Mahmud S, Zhang XQ, Zhu J, Shen ZS, Liu XQ. Biobased amorphous polyesters with high t-g: trade-off between rigid and flexible cyclic diols. ACS Sustain Chem Eng. 2019;7:6401–11.

    Article  CAS  Google Scholar 

  9. Wang JG, Liu XQ, Zhang YJ, Liu F, Zhu J. Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: Influence of composition on mechanical and barrier properties. Polymer. 2016;103:1–8.

    Article  CAS  Google Scholar 

  10. Hong S, Min KD, Nam BU, Park O. High molecular weight bio furan-based co-polyesters for food packaging applications: synthesis, characterization and solid-state polymerization. Green Chem. 2016;18:5142–50.

    Article  CAS  Google Scholar 

  11. Joshi AS, Alipourasiabi N, Kim Y-W, Coleman MR, Lawrence JG. Role of enhanced solubility in esterification of 2,5-furandicarboxylic acid with ethylene glycol at reduced temperatures: energy efficient synthesis of poly(ethylene 2,5-furandicarboxylate). React Chem Eng. 2018;3:447–53.

    Article  CAS  Google Scholar 

  12. Vannini M, Marchese P, Celli A, Lorenzetti C. Fully biobased poly(propylene 2,5-furandicarboxylate) for packaging applications: excellent barrier properties as a function of crystallinity. Green Chem. 2015;17:4162–6.

    Article  CAS  Google Scholar 

  13. Andreozzi S, Chakrabarti A, Soh KC, Burgard A, Yang TH, Van Dien S, et al. Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models. Metab Eng. 2016;35:148–59.

    Article  CAS  PubMed  Google Scholar 

  14. Mitiakoudis A, Gandini A. Synthesis and characterization of furanic polyamides. Macromolecules. 1991;24:830–5.

    Article  CAS  Google Scholar 

  15. Azzam RA, Mohamed SK, Tol R, Everaert V, Reynaers H, Goderis B. Synthesis and thermo-mechanical characterization of high performance polyurethane elastomers based on heterocyclic and aromatic diamine chain extenders. Polym Degrad Stab. 2007;92:1316–25.

    Article  CAS  Google Scholar 

  16. Boufi S, Belgacem MN, Quillerou J, Gandini A. Urethanes and polyurethanes bearing furan moieties. 4. Synthesis, kinetics and characterization of linear polymers. Macromolecules. 1993;26:6706–17.

    Article  CAS  Google Scholar 

  17. Jiang M, Liu Q, Zhang Q, Ye C, Zhou G. A series of furan-aromatic polyesters synthesized via direct esterification method based on renewable resources. J Polym Sci A Polym Chem. 2012;50:1026–36.

    Article  CAS  Google Scholar 

  18. Papageorgiou GZ, Papageorgiou DG, Tsanaktsis V, Bikiaris DN. Synthesis of the bio-based polyester poly(propylene 2,5-furan dicarboxylate). Comparison of thermal behavior and solid state structure with its terephthalate and naphthalate homologues. Polymer. 2015;62:28–38.

    Article  CAS  Google Scholar 

  19. Zhu JH, Cai JL, Xie WC, Chen PH, Gazzano M, Scandola M, et al. Poly(butylene 2,5-furan dicarboxylate), a biobased alternative to PBT: Synthesis, physical properties, and crystal structure. Macromolecules. 2013;46:796–804.

    Article  CAS  Google Scholar 

  20. Papageorgiou GZ, Tsanaktsis V, Papageorgiou DG, Exarhopoulos S, Papageorgiou M, Bikiaris DN. Evaluation of polyesters from renewable resources as alternatives to the current fossil-based polymers. Phase transitions of poly(butylene 2,5-furan-dicarboxylate). Polymer. 2014;55:3846–58.

    Article  CAS  Google Scholar 

  21. Ma JP, Yu XF, Xu J, Pang Y. Synthesis and crystallinity of poly(butylene 2,5-furandicarboxylate). Polymer. 2012;53:4145–51.

    Article  CAS  Google Scholar 

  22. Ma J, Pang Y, Wang M, Xu J, Ma H, Nie X. The copolymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester materials. J Mater Chem. 2012;22:3457–61.

    Article  CAS  Google Scholar 

  23. Knoop RJI, Vogelzang W, Haveren JV. High molecular weight poly(ethylene-2,5-furanoate); critical aspects in synthesis and mechanical property determination. J Polym Sci A Polym Chem. 2013;51:4191–9.

    Article  CAS  Google Scholar 

  24. Gomes M, Gandini A, Silvestre AJD, Reis B. Synthesis and characterization of poly(2,5-furan dicarboxylate)s based on a variety of diols. J Polym Sci A Polym Chem. 2011;49:3759–68.

    Article  CAS  Google Scholar 

  25. Gandini A, Coelho D, Gomes M, Reis B, Silvestre A. Materials from renewable resources based on furan monomers and furan chemistry: work in progress. J Mater Chem. 2009;19:8656–64.

    Article  CAS  Google Scholar 

  26. Burgess SK, Karvan O, Johnson JR, Kriegel RM, Koros WJ. Oxygen sorption and transport in amorphous poly(ethylene furanoate). Polymer. 2014;55:4748–56.

    Article  CAS  Google Scholar 

  27. Burgess SK, Kriegel RM, Koros WJ. Carbon dioxide sorption and transport in amorphous poly(ethylene furanoate). Macromolecules. 2015;48:2184–93.

    Article  CAS  Google Scholar 

  28. Papageorgiou P, Terzopoulou B. Production of bio-based 2,5-furan dicarboxylate polyesters: recent progress and critical aspects in their synthesis and thermal properties. Eur Polym J. 2016;83:202–29.

    Article  CAS  Google Scholar 

  29. Sun L, Wang J, Mahmud S, Jiang Y, Zhu J, Liu X. New insight into the mechanism for the excellent gas properties of poly(ethylene 2,5-furandicarboxylate) (PEF): role of furan ring’s polarity. Eur Polym J. 2019;118:642–50.

    Article  CAS  Google Scholar 

  30. Papageorgiou GZ, Tsanaktsis V, Bikiaris DN. Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN. Phys Chem Chem Phys. 2014;16:7946–58.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao M, Zhang C, Yang F, Weng Y. Gas barrier properties of furan-based polyester films analyzed experimentally and by molecular simulations. Polymer. 2021;233:124200.

    Article  CAS  Google Scholar 

  32. Burgess SK, Leisen JE, Kraftschik BE, Mubarak CR, Kriegel RM, Koros WJ. Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules. 2014;47:1383–91.

    Article  CAS  Google Scholar 

  33. Banella MB, Bonucci J, Vannini M, Marchese P, Lorenzetti C, Celli A. Insights into the synthesis of poly(ethylene 2,5-furandicarboxylate) from 2,5-furandicarboxylic acid: steps toward environmental and food safety excellence in packaging applications. Ind Eng Chem Res. 2019;58:8955–62.

    Article  CAS  Google Scholar 

  34. Gubbels E, Jasinska-Walc L, Noordover BAJ, Koning C. Linear and branched polyester resins based on dimethyl-2,5-furandicarboxylate for coating applications. Eur Polym J. 2013;49:3188–98.

    Article  CAS  Google Scholar 

  35. Eerhart A, Faaij APC, Patel MK. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy Environ. 2012;5:6407–22.

    Article  CAS  Google Scholar 

  36. Sousa AF, Vilela C, Fonseca AC, Matos M, Freire C, Gruter G-JM, et al. Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym Chem. 2015;6:5961–83.

    Article  CAS  Google Scholar 

  37. Levchik SV, Weil ED. A review on thermal decomposition and combustion of thermoplastic polyesters. Polym Adv Technol. 2004;15:691–700.

    Article  CAS  Google Scholar 

  38. Levchik SV, Weil ED. Flame retardancy of thermoplastic polyesters—a review of the recent literature. Polym Int. 2005;54:11–35.

    Article  CAS  Google Scholar 

  39. Tjahjadi M, Gallucci RR, Blackburn KJ, George ER. Flame retardant polyamide composition. Elastom Plast. 1999;31:205.

    Article  CAS  Google Scholar 

  40. Zhao H-B, Chen L, Yang J-C, Ge X-G, Wang Y-Z. A novel flame-retardant-free copolyester: cross-linking towards self extinguishing and non-dripping. J Mater Chem. 2012;22:19849–57.

    Article  CAS  Google Scholar 

  41. Chen L, Ruan C, Yang R, Wang Y-Z. Phosphorus-containing thermotropic liquid crystalline polymers: a class of efficient polymeric flame retardants. Polym Chem. 2014;5:3737–49.

    Article  CAS  Google Scholar 

  42. Pospiech D, Korwitz A, Komber H, Jehnichen D, Häußler L, Scheibner H, et al. Biobased aliphatic polyesters with dopo substituents for enhanced flame retardancy. Macromol Chem Phys. 2015;216:1447–61.

    Article  CAS  Google Scholar 

  43. Sato M, Endo S, Araki Y, Matsuoka G, Gyobu S, Takeuchi H. The flame-retardant polyester fiber: Improvement of hydrolysis resistance. J Appl Polym Sci. 2000;78:1134–8.

    Article  Google Scholar 

  44. Vlad-Bubulac T, Hamciuc C, Petreus O. Synthesis and properties of some phosphorus-containing polyesters. High Perform Polym. 2006;18:255–64.

    Article  CAS  Google Scholar 

  45. Lin C-M, Chen C-H, Lin C-H, Juang T-Y. High-performance bio-based benzoxazines derived from phosphinated biphenols and furfurylamine. Eur Polym J. 2018;108:48–56.

    Article  CAS  Google Scholar 

  46. Teng N, Dai J, Wang S, Hu J, Liu X. Hyperbranched flame retardant for epoxy resin modification: simultaneously improved flame retardancy, toughness and strength as well as glass transition temperature. Chem Eng J. 2022;428:131226.

    Article  CAS  Google Scholar 

  47. Yoon WJ, Hwang SY, Koo JM, Lee YJ, Lee SU, Im SS. Synthesis and characteristics of a biobased high-tg terpolyester of isosorbide, ethylene glycol, and 1,4-cyclohexane dimethanol: effect of ethylene glycol as a chain linker on polymerization. Macromolecules. 2013;46:7219–31.

    Article  CAS  Google Scholar 

  48. Liu JG, Dai J, Wang S, Peng Y, Cao L, Liu X. Facile synthesis of bio-based reactive flame retardant from vanillin and guaiacol for epoxy resin. Compos B Eng. 2020;190:107926.

    Article  CAS  Google Scholar 

  49. Jian R, Wang P, Duan W, Wang J, Zheng X, Weng J. Synthesis of a novel P/N/S-containing flame retardant and its application in epoxy resin: thermal property, flame retardance, and pyrolysis behavior. Ind Eng Chem Res. 2016;55:11520–7.

    Article  CAS  Google Scholar 

  50. Wang S, Ma S, Li Q, Yuan W, Wang B, Zhu J. Robust, fire-safe, monomer-recovery, highly malleable thermosets from renewable bioresources. Macromolecules. 2018;51:8001–12.

    Article  CAS  Google Scholar 

  51. Diao LC, Su KM, Li ZH, Ding CK. Furan-based co-polyesters with enhanced thermal properties: poly(1,4-butylene-co-1,4-cyclohexanedimethylene-2,5-furandicarboxylic acid). RSC Adv. 2016;6:27632–9.

    Article  CAS  Google Scholar 

  52. Wang J, Liu X, Zhu J, Jiang Y. Copolyesters based on 2,5-furandicarboxylic acid (FDCA): effect of 2,2,4,4-tetramethyl-1,3-cyclobutanediol units on their properties. Polymers. 2017;9:305.

    Article  PubMed Central  CAS  Google Scholar 

  53. Kasmi N, Majdoub M, Papageorgiou GZ, Bikiaris DN. Synthesis and crystallization of new fully renewable resources-based copolyesters: poly(1,4-cyclohexanedimethanol-co-isosorbide 2,5-furandicarboxylate). Polym Degrad Stab. 2018;152:177–90.

    Article  CAS  Google Scholar 

  54. Dangseeyun N, Srimoaon P, Supaphol P, Nithitanakul M. Isothermal melt-crystallization and melting behavior for three linear aromatic polyesters. Thermochim Acta. 2004;409:63–77.

    Article  CAS  Google Scholar 

  55. van Berkel JG, Guigo N, Visser HA, Sbirrazzuoli N. Chain structure and molecular weight dependent mechanics of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate). Macromolecules. 2018;51:8539–49.

    Article  CAS  Google Scholar 

  56. Runt J, Miley DM, Zhang X, Gallagher KP, McFeaters K, Fishburn J. Crystallization of poly(butylene terephthalate) and its blends with polyarylate. Macromolecules. 1992;25:1929–34.

    Article  CAS  Google Scholar 

  57. Papageorgiou GZ, Tsanaktsis V, Papageorgiou DG, Chrissafis K, Exarhopoulos S, Bikiaris DN. Furan-based polyesters from renewable resources: Crystallization and thermal degradation behavior of poly(hexamethylene 2,5-furan-dicarboxylate). Eur Polym J. 2015;67:383–96.

    Article  CAS  Google Scholar 

  58. Wang G, Jiang M, Zhang Q, Wang R, Qu X, Zhou G. Biobased multiblock copolymers: synthesis, properties and shape memory behavior of poly(hexamethylene 2,5-furandicarboxylate)-b-poly(ethylene glycol). Polym Degrad Stab. 2018;153:292–7.

    Article  CAS  Google Scholar 

  59. Wang J, Liu X, Jia Z, Sun L, Zhang Y, Zhu J. Modification of poly(ethylene 2,5-furandicarboxylate) (PEF) with 1, 4-cyclohexanedimethanol: influence of stereochemistry of 1,4-cyclohexylene units. Polymer. 2018;137:173–85.

    Article  CAS  Google Scholar 

  60. Wang JG, Liu XQ, Jia Z, Sun LY, Zhu J. Highly crystalline polyesters synthesized from furandicarboxylic acid (FDCA): Potential bio-based engineering plastic. Eur Polym J. 2018;109:379–90.

    Article  CAS  Google Scholar 

  61. Schartel B, Balabanovich AI, Braun U, Knoll U, Artner J, Ciesielski M, et al. Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame-retarded with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide additives. J Appl Polym Sci. 2010;104:2260–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly thank the Zhejiang Provincial Natural Science Foundation of China (LR20E030001 and LGG21B040001), Zhejiang Provincial Key Scientific Research Programs (2021C01061), National Natural Science Foundation of China (NSFC 21975270), and National Key R&D Program of China (2021YFB3700300) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinggang Wang or Xiaoqing Liu.

Ethics declarations

Conflict of interest

The authors declre no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, X., Zhang, X., Liu, J. et al. Synthesis of a fire-retardant and high Tg biobased polyester from 2,5-furandicarboxylic acid. Polym J 54, 995–1008 (2022). https://doi.org/10.1038/s41428-022-00642-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00642-y

Search

Quick links