Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Characterization of polyurethane and a silk fibroin-polyurethane composite fiber studied with NMR spectroscopies

Abstract

Recently, Bombyx mori silk fibroin (SF) has played a crucial role in biomedical applications. However, due to the highly ordered β-sheet structure in SF, the flexibility of SF fiber is relatively poor, which limits its application in biomaterials. In this paper, a SF-polyurethane (PU) composite fiber was prepared to increase the flexibility of SF fiber. PU prepared by a reaction of mainly a copolymer of polyhexamethylene carbonate diol and polycaprolactone diol (PHC/PCL-diol) with 4,4’-diphenylmethane diisocyanate (MDI) was used. First, the 1H and 13C solution NMR peaks of PU were assigned to groups in detail. In addition, the 13C solid-state NMR spectrum of PU was analyzed. Then, regenerated SF-PU composite fiber was prepared by the wet spinning method. The elongation at break of the fiber increased by 1.3-1.8 times compared with that of regenerated SF fiber, although there was no significant increase in tensile strength. The main reason for the increased flexibility of the SF-PU composite fiber is the increase in the fraction of random coils in SF, which was clearly observed by 13C solid-state NMR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Asakura T, Kaplan DL Silk production and processing. In: Arutzen CJ (ed). Encyclopedia of Agricultural Science. Academic Press: New York, 1994, pp 1–11.

  2. O’Brien JP, Fahnestock SR, Termonia Y, Gardner KH. Nylons from nature: synthetic analogs to spider silk. Adv Mater. 1998;10:1185–95.

    Article  Google Scholar 

  3. Fu C, Shao Z, Fritz V. Animal silks: their structures, properties and artificial production. Chem Commun. 2009;37:6515–29.

    Article  CAS  Google Scholar 

  4. Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32:991–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Asakura T, Miller T. Biotechnology of Silk. Springer Netherlands: Dordrecht, 2014 https://doi.org/10.1007/978-94-007-7119-2.

  6. Koh L-D, Cheng Y, Teng C-P, Khin Y-W, Loh X-J, Tee S-Y, et al. Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci. 2015;46:86–110.

    Article  CAS  Google Scholar 

  7. Kundu B, Kurland NE, Bano S, Patra C, Engel FB, Yadavalli VK, et al. Silk proteins for biomedical applications: bioengineering perspectives. Prog Polym Sci. 2014;39:251–67.

    Article  CAS  Google Scholar 

  8. Pereira RFP, Silva MM, de Zea Bermudez V. Bombyx mori silk fibers: an outstanding family of materials. Macromol Mater Eng. 2015;300:1171–98.

    Article  CAS  Google Scholar 

  9. Thurber AE, Omenetto FG, Kaplan DL. In vivo bioresponses to silk proteins. Biomaterials. 2015;71:145–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holland C, Numata K, Rnjak-Kovacina J, Seib FP. The biomedical use of silk: past, present, future. Adv Healthcare Mater. 2019;8:1800465.

    Article  CAS  Google Scholar 

  11. Tamara AB, DeSimone E, Scheibel T. Biomedical applications of recombinant silk‐based materials. Adv Mater. 2018;30:1704636.

    Article  CAS  Google Scholar 

  12. Asakura T, Tanaka T, Tanaka R. Advanced silk fibroin biomaterials and application to small-diameter silk vascular grafts. ACS Biomater Sci Eng. 2019;5:5561–77.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou F, Zhang X, Cai D, Li J, Mu Q, Zhang W, et al. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Acta Biomater. 2017;63:64–75.

    Article  CAS  PubMed  Google Scholar 

  14. Du J, Zhu T, Yu H, Zhu J, Sun C, Wang J, et al. Potential applications of three-dimensional structure of silk fibroin/poly(ester-urethane) urea nanofibrous scaffold in heart valve tissue engineering. Appl Surf Sci. 2018;447:269–78.

    Article  CAS  Google Scholar 

  15. Nguyen TP, Nguyen QV, Nguyen V-H, Le T-H, Huynh VQN, Vo D-VN, et al. Silk fibroin-based biomaterials for biomedical applications: a review. Polym (Basel). 2019;11:1933.

    Article  CAS  Google Scholar 

  16. Chattopadhyay DK, Raju KVSN. Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci. 2007;32:352–418.

    Article  CAS  Google Scholar 

  17. Madbouly SA, Otaigbe JU. Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and films. Prog Polym Sci. 2009;34:1283–332.

    Article  CAS  Google Scholar 

  18. Fang J, Ye S-H, Shankarraman V, Huang Y, Mo X, Wagner WR. Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine. Acta Biomater. 2014;10:4639–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ercolani E, Del Gaudio C, Bianco A. Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J Tissue Eng Regen Med. 2015;9:861–88.

    Article  CAS  PubMed  Google Scholar 

  20. Adipurnama I, Yang M-C, Ciach T, Butruk-Raszeja B. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomater Sci. 2017;5:22–37.

    Article  CAS  Google Scholar 

  21. Zhu T, Yu K, Bhutto MA, Guo X, Shen W, Wang J, et al. Synthesis of RGD-peptide modified poly(ester-urethane) urea electrospun nanofibers as a potential application for vascular tissue engineering. Chem Eng J. 2017;315:177–90.

    Article  CAS  Google Scholar 

  22. Król P, Uram Ł, Król B, Pielichowska K, Sochacka-Piętal M, Walczak M. Synthesis and property of polyurethane elastomer for biomedical applications based on nonaromatic isocyanates, polyesters, and ethylene glycol. Colloid Polym Sci. 2020;298:1077–93.

    Article  CAS  Google Scholar 

  23. Iizuka E, Sawada K, Motojima K. Physical properties of fibroin-blended polyurethane films. J Sericultural Sci Jpn. 1998;67:217–21.

    CAS  Google Scholar 

  24. Liu X-Y, Zhang C-C, Xu W-L, Ouyang C. Controlled release of heparin from blended polyurethane and silk fibroin film. Mater Lett. 2009;63:263–5.

    Article  CAS  Google Scholar 

  25. Tao Y, Yan Y, Xu W. Physical characteristics and properties of waterborne polyurethane materials reinforced with silk fibroin powder. J Polym Sci Part B Polym Phys. 2010;48:940–50.

    Article  CAS  Google Scholar 

  26. Hardy JG, Scheibel TR. Composite materials based on silk proteins. Prog Polym Sci. 2010;35:1093–115.

    Article  CAS  Google Scholar 

  27. Nakazawa Y, Asano A, Nakazawa CT, Tsukatani T, Asakura T. Structural characterization of silk-polyurethane composite material for biomaterials using solid-state NMR. Polym J. 2012;44:802–7.

    Article  CAS  Google Scholar 

  28. Park H, Gong M-S, Park J-H, Moon S-I, Wall IB, Kim H-W, et al. Silk fibroin-polyurethane blends: physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation. Acta Biomater. 2013;9:8962–71.

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki Y, Nakazawa Y, Derya A, Komatsu T, Miyazaki K, Yamazaki S, et al. Development of silk/polyurethane small-diameter vascular graft by electrospinning. Seikei-Kakou. 2013;25:181–7.

    Article  Google Scholar 

  30. Yu E, Mi H-Y, Zhang J, Thomson JA, Turng L-S. Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach. J Biomed Mater Res Part A. 2018;106:985–96.

    Article  CAS  Google Scholar 

  31. Shimada K, Higuchi A, Kubo R, Murakami T, Nakazawa Y, Tanaka R. The effect of a silk Fibroin/Polyurethane blend patch on rat Vessels. Organogenesis. 2017;13:115–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakazawa CT, Higuchi A, Asano A, Kameda T, Aytemiz D, Nakazawa Y. Solid-state NMR studies for the development of non-woven biomaterials based on silk fibroin and polyurethane. Polym J. 2017;49:583–6.

    Article  CAS  Google Scholar 

  33. Venkatesan H, Hu J, Chen J. Bioinspired fabrication of polyurethane/regenerated silk fibroin composite fibres with tubuliform silk-like flat stress–strain behaviour. Polym (Basel). 2018;10:333.

    Article  CAS  Google Scholar 

  34. Aytemiz D, Fukuda Y, Higuchi A, Asano A, Nakazawa CT, Kameda T, et al. Compatibility evaluation of non-woven sheet composite of silk fibroin and polyurethane in the wet state. Polym (Basel). 2018;10:874.

    Article  CAS  Google Scholar 

  35. Li F, Tan Y, Chen L, Jing L, Wu D, Wang T. High fibre-volume silkworm cocoon composites with strong structure bonded by polyurethane elastomer for high toughness. Compos Part A Appl Sci Manuf. 2019;125:105553.

    Article  CAS  Google Scholar 

  36. van Uden S, Catto V, Perotto G, Athanassiou A, Redaelli ACL, Greco FG, et al. Electrospun fibroin/polyurethane hybrid meshes: manufacturing, characterization, and potentialities as substrates for haemodialysis arteriovenous grafts. J Biomed Mater Res Part B Appl Biomater. 2019;107:807–17.

    Article  CAS  Google Scholar 

  37. Riboldi SA, Tozzi M, Bagardi M, Ravasio G, Cigalino G, Crippa L, et al. A novel hybrid silk fibroin/polyurethane arteriovenous graft for hemodialysis: proof‐of‐concept animal study in an ovine model. Adv Health Mater. 2020;9:2000794.

    Article  CAS  Google Scholar 

  38. Asakura T, Ibe Y, Jono T, Matsuda H, Kuwabara N, Naito A. Structural investigations of polyurethane and silk-polyurethane composite fiber studied by 13C solid-state NMR spectroscopy. J Appl Polym Sci. 2021;138:51178.

    Article  CAS  Google Scholar 

  39. Eceiza A, de la Caba K, Kortaberria G, Gabilondo N, Marieta C, Corcuera MA, et al. Influence of molecular weight and chemical structure of soft segment in reaction kinetics of polycarbonate diols with 4,4′-diphenylmethane diisocyanate. Eur Polym J. 2005;41:3051–9.

    Article  CAS  Google Scholar 

  40. Eceiza A, Martin MD, de la Caba K, Kortaberria G, Gabilondo N, Corcuera MA, et al. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: mechanical and thermal properties. Polym Eng Sci. 2008;48:297–306.

    Article  CAS  Google Scholar 

  41. Fernández-d’Arlas B, Alonso-Varona A, Palomares T, Corcuera MA, Eceiza A. Studies on the morphology, properties and biocompatibility of aliphatic diisocyanate-polycarbonate polyurethanes. Polym Degrad Stab. 2015;122:153–60.

    Article  CAS  Google Scholar 

  42. Asakura T, Saotome T, Aytemiz D, Shimokawatoko H, Yagi T, Fukayama T, et al. Characterization of silk sponge in the wet state using 13C solid state NMR for development of a porous silk vascular graft with small diameter. RSC Adv. 2014;4:4427–34.

    Article  CAS  Google Scholar 

  43. Zhao C, Yao J, Masuda H, Raghuvansh K, Asakura T. Structural characterization and artificial fiber formation of Bombyx mori silk fibroin in hexafluoro-iso-propanol solvent system. Biopolymers. 2003;69:253–9.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu ZH, Ohgo K, Asakura T. Preparation and characterization of regenerated Bombyx mori silk fibroin fiber with high strength. Express Polym Lett. 2008;2:885–9.

    Article  CAS  Google Scholar 

  45. Zhu Z, Ohgo K, Watanabe R, Takezawa T, Asakura T. Preparation and characterization of regenerated Bombyx mori silk fibroin fiber containing recombinant cell-adhesive proteins; Nonwoven fiber and monofilament. J Appl Polym Sci. 2008;109:2956–63.

    Article  CAS  Google Scholar 

  46. Zhu Z, Kikuchi Y, Kojima K, Tamura T, Kuwabara N, Nakamura T, et al. Mechanical properties of regenerated bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms. J Biomater Sci Polym Ed. 2010;21:395–411.

    Article  CAS  PubMed  Google Scholar 

  47. Asakura T, Ibe Y, Jono T, Naito A. Structure and dynamics of biodegradable polyurethane-silk fibroin composite materials in the dry and hydrated states studied using 13C solid-state NMR spectroscopy. Polym Degrad Stab. 2021;190:109645.

    Article  CAS  Google Scholar 

  48. Tasei Y, Nishimura A, Suzuki YY, Sato TK, Sugahara J, Asakura T. NMR investigation about heterogeneous structure and dynamics of recombinant spider silk in the dry and hydrated states. Macromolecules. 2017;50:8117–28.

    Article  CAS  Google Scholar 

  49. Asakura T, Endo M, Fukuhara R, Tasei Y. 13C NMR characterization of hydrated 13C labeled Bombyx mori silk fibroin sponges prepared using glycerin, poly(ethylene glycol diglycidyl ether) and poly(ethylene glycol) as porogens. J Mater Chem B. 2017;5:2152–60.

    Article  CAS  PubMed  Google Scholar 

  50. Asakura T, Tasei Y, Aoki A, Nishimura A. Mixture of rectangular and staggered packing arrangements of polyalanine region in spider dragline silk in dry and hydrated states as revealed by 13C NMR and X-ray diffraction. Macromolecules. 2018;51:1058–68.

    Article  CAS  Google Scholar 

  51. Nishimura A, Matsuda H, Tasei Y, Asakura T. Effect of water on the structure and dynamics of regenerated [3-13C] Ser, [3-13C], and [3-13C] Ala-Bombyx mori silk fibroin studied with 13C solid-state nuclear magnetic resonance. Biomacromolecules. 2018;19:563–75.

    Article  CAS  PubMed  Google Scholar 

  52. Tanaka T, Uemura A, Tanaka R, Tasei Y, Asakura T. Comparison of the knitted silk vascular grafts coated with fibroin sponges prepared using glycerin, poly(ethylene glycol diglycidyl ether) and poly(ethylene glycol) as porogens. J Biomater Appl. 2018;32:1239–52.

    Article  CAS  PubMed  Google Scholar 

  53. Asakura T, Matsuda H, Naito A. Acetylation of Bombyx mori silk fibroin and their characterization in the dry and hydrated states using 13C solid-state NMR. Int J Biol Macromol. 2020;155:1410–9.

    Article  CAS  PubMed  Google Scholar 

  54. Asakura T. Structure and dynamics of spider silk studied with solid-state nuclear magnetic resonance and molecular dynamics simulation. Molecules. 2020;25:2634.

    Article  CAS  PubMed Central  Google Scholar 

  55. Sait H, Tuzi S, Tanio M, Naito A. Dynamic aspects of membrane proteins and membrane-associated peptides as revealed by 13C NMR: Lessons from bacteriorhodopsin as an intact protein. In: Annual Reports on NMR Spectroscopy. Academic Press, 2002, pp 39–108.

  56. Saitô H, Ando I. High-resolution solid-state NMR studies of synthetic and biological macromolecules. Annu Rep. NMR Spectrosc. 1989;21:209–90.

    Article  Google Scholar 

  57. Spera S, Bax A. Empirical correlation between protein backbone conformation and Cα and Cβ 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc. 1991;113:5490–2.

    Article  CAS  Google Scholar 

  58. Asakura T, Iwadate M, Demura M, Williamson MP. Structural analysis of silk with 13C NMR chemical shift contour plots. Int J Biol Macromol. 1999;24:167–71.

    Article  CAS  PubMed  Google Scholar 

  59. Asakura T, Okushita K, Williamson MP. Analysis of the structure of Bombyx mori silk fibroin by NMR. Macromolecules. 2015;48:2345–57.

    Article  CAS  Google Scholar 

  60. Asakura T. Structure of Silk I (Bombyx mori Silk Fibroin before Spinning) -Type II β-Turn, Not α-Helix-. molecules. 2021;26:3706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Asakura T, Yao J, Yamane T, Umemura K, Ulrich AS. Heterogeneous structure of silk fibers from bombyx mori resolved by 13C solid-state NMR spectroscopy. J Am Chem Soc. 2002;124:8794–5.

    Article  CAS  PubMed  Google Scholar 

  62. Asakura T, Aoki A, Komatsu K, Ito C, Suzuki I, Naito A, et al. Lamellar structure in alanine–glycine copolypeptides studied by solid-state NMR spectroscopy: a model for the crystalline domain of bombyx mori silk fibroin in silk II form. Biomacromolecules. 2020;21:3102–11.

    Article  CAS  PubMed  Google Scholar 

  63. Asakura T, Ogawa T, Naito A, Williamson MP. Chain-folded lamellar structure and dynamics of the crystalline fraction of Bombyx mori silk fibroin and of (Ala-Gly-Ser-Gly-Ala-Gly)n model peptides. Int J Biol Macromol. 2020;164:3974–83.

    Article  CAS  PubMed  Google Scholar 

  64. Asakura T, Demura M, Date T, Miyashita N, Ogawa K, Williamson MP. NMR study of silk I structure of Bombyx mori silk fibroin with 15N- and 13C-NMR chemical shift contour plots. Biopolymers. 1997;41:193–203.

    Article  CAS  Google Scholar 

  65. Iwadate M, Asakura T, Williamson MP. Cα and Cβ Carbon-13 chemical shifts in proteins from an empirical database. J Biomol NMR. 1999;13:199–211.

    Article  CAS  PubMed  Google Scholar 

  66. Liu H, Xu W, Zou H, Ke G, Li W, Ouyang C. Feasibility of wet spinning of silk-inspired polyurethane elastic biofiber. Mater Lett. 2008;62:1949–52.

    Article  CAS  Google Scholar 

  67. Um I-C, Kweon H-Y, Hwang CM, Min B-G, Park Y-H. Structural characteristics and properties of silk fibroin/polyurethane blend films. Int J Ind Entomol. 2002;5:163–70.

    Google Scholar 

  68. Tanaka T, Ibe Y, Jono T, Tanaka R, Naito A, Asakura T. Characterization of a water-dispersed biodegradable polyurethane-silk composite sponge using 13C solid-state nuclear magnetic resonance as coating material for silk vascular grafts with small diameters. molecules. 2021;26:4649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Mr. Y. Ibe and Mr. K. Jono (Tosoh Co.) for kindly providing polyurethanes that they had synthesized. T.A. also acknowledges support by a JSPS KAKENHI Grant-in-Aid for Scientific Research 599 (C), grant number JP19K05609.

Author information

Authors and Affiliations

Authors

Contributions

KS: Data collection and analysis, writing-original draft. TA: Conceptualization and analysis, writing-original draft, review & editing. HM: Data collection and analysis, review & editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Koto Suganuma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suganuma, K., Matsuda, H. & Asakura, T. Characterization of polyurethane and a silk fibroin-polyurethane composite fiber studied with NMR spectroscopies. Polym J 54, 803–813 (2022). https://doi.org/10.1038/s41428-022-00629-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00629-9

Search

Quick links