Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Growth of polypropylene crystals in the vicinity of carbon fibers and improvement of their interfacial shear strength

Abstract

The effect of polypropylene (PP) crystals on the interfacial shear strength between PP and carbon fiber (CF) was investigated using isotactic PP (iPP), which has high tacticity, blended to atactic PP (aPP), with low tacticity, or maleic anhydride-modified PP (MAPP). The interfacial shear strength of iPP/CF is improved by adding MAPP; however, it is decreased after adding aPP. Micro-Raman spectroscopy analysis of the PP matrix around CF reveals that the crystallinity of iPP and iPP/aPP (70/30) is gradually decreased toward the CF surface, whereas that for iPP/MAPP (91/9) is gradually increased. Moreover, the crystallinity of iPP/aPP (70/30) in the vicinity of CF is much smaller than that of iPP, while that for iPP/MAPP (91/9) is larger than that for iPP, although the crystallinity of iPP in the bulk (without CF) is reduced by the presence of MAPP and aPP. The development of PP crystals around CF improves the interfacial shear strength for PP/CF, and maleic anhydride modification of PP chains promotes the growth of PP crystals in the vicinity of the CF surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Garces P, Fraile J, Vilaplana-Ortegob E, Cazorla-Amoros D, Alcocel EG, Andion LG. Effect of carbon fibres on the mechanical properties and corrosion levels of reinforced portland cement mortars. Cem Concr Res. 2005;35:324–31.

    Article  CAS  Google Scholar 

  2. Peng Z, Nie X. Galvanic corrosion property of contacts between carbon fiber cloth materials and typical metal alloys in an aggressive environment. Surf Coat Tech. 2013;215:85–9.

    Article  CAS  Google Scholar 

  3. Galiotis C. A study of mechanisms of stress transfer in continuous- and discontinuous-fibre model composites by laser Raman spectroscopy. Compos Sci Technol. 1993;48:15–8.

    Article  CAS  Google Scholar 

  4. Carbone MGP, Parthenios J, Tsoukleri G, Cotugno S, Mensitieri G, Galiotis C. Assessing micromechanical behaviour of PET cords in rubber matrix composites by laser Raman microscopy. Compos Sci Technol. 2013;85:104–10.

    Article  Google Scholar 

  5. Tang LG, Kardos JL. A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix. Polym Compos. 1997;18:100–13.

    Article  CAS  Google Scholar 

  6. Park SJ, Kim MH, Lee JR, Choi S. Effect of fiber–polymer interactions on fracture toughness behavior of carbon fiber-reinforced epoxy matrix composites. J Colloid Interf Sci. 2000;228:287–91.

    Article  CAS  Google Scholar 

  7. Liu Y, Fang Y, Qian J, Liu Z, Yang B, Wang X. Bio-inspired polydopamine functionalization of carbon fiber for improving the interfacial adhesion of polypropylene composites. RSC Adv. 2015;5:107652–61.

    Article  CAS  Google Scholar 

  8. Uematsu H, Suzuki Y, Iemoto Y, Tanoue S. Effect of maleic anhydride-grafted polypropylene on the flow orientation of short glass fiber in molten polypropylene and on tensile properties of composites. Adv Polym Tech. 2018;37:1755–63.

    Article  CAS  Google Scholar 

  9. Yamaguchi A, Hashimoto T, Uematsu H, Urushisaki M, Sakaguchi T, Takamura A, et al. Investigation of interfacial adhesion of telechelic polypropylenes for carbon fi ber-reinforced plastics. Polym J. 2020;52:413–9.

    Article  CAS  Google Scholar 

  10. Russo P, Acierno D, Simeoli G, Iannace S, Sorrentino L. Flexural and impact response of woven glass fiber fabric/polypropylene composites. Compos Part B Eng. 2013;54:415–21.

    Article  CAS  Google Scholar 

  11. Chen L, Tang CY, Ku HSl, Tsui CP, Chen X. Microwave sintering and characterization of polypropylene/multi-walled carbon nanotube/hydroxyapatite composites. Compos Part B Eng. 2014;56:504–11.

  12. Wong KH, Mohammed DS, Pickering SJ, Brooks R. Effect of coupling agents on reinforcing potential of recycled carbon fibre for polypropylene composite. Compos Sci Technol. 2012;72:835–44.

    Article  CAS  Google Scholar 

  13. Li J. The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber. Appl Surf Sci. 2009;255:8682–4.

    Article  CAS  Google Scholar 

  14. Park JM, Lee JO, Park TW. Improved interfacial shear strength and durability of single carbon fiber reinforced isotactic polypropylene composites using water dispersible graft copolymer as a coupling agent. Polym Comp. 1996;17:375–83.

    Article  CAS  Google Scholar 

  15. Tian HF, Yao YY, Liu D, Li YC, Jv R, Xiang G, et al. Enhanced interfacial adhesion and properties of polypropylene/carbon fiber composites by fiber surface oxidation in presence of a compatibilizer. Polym Compos. 2019;40:E654–62.

    Article  CAS  Google Scholar 

  16. Fernandez A, Santangelo-Muro M, Fernandez-Blazquez JP, Lopes CS, Molina-Aldareguia JM. Processing and properties of long recycled-carbon-fibre reinforced polypropylene. Compos Part B Eng. 2021;211:108653.

    Article  CAS  Google Scholar 

  17. Assouline E, Wachtel E, Grigull S, Lustiger A, Wagner HD, Maroma G. Lamellar twisting in α isotactic polypropylene transcrystallinity investigated by synchrotron microbeam X-ray diffraction. Polymer. 2001;42:6231–7.

    Article  CAS  Google Scholar 

  18. Zhang S, Minus ML, Zhu L, Wong CP, Kumar S. Polymer transcrystallinity induced by carbon nanotubes. Polymer. 2008;49:1356–64.

    Article  CAS  Google Scholar 

  19. Carvalho WS, Bretas RES. Thermoplastic/carbon fibre composites: correlation between interphase morphology and dynamic mechanical properties. Eur Polym J. 1990;26:817–21.

    Article  CAS  Google Scholar 

  20. Gao Y, Xie M, Liu L, Li J, Kuang J, Ma W, et al. Effect of supra-molecular microstructures on the adhesion of SWCNT fiber/iPP interface. Polymer. 2013;54:456–63.

    Article  CAS  Google Scholar 

  21. Wang C, Wu YJ, Fang CY, Tsai CW. Electrospun nanofiber-reinforced polypropylene composites: nucleating ability of nanofibers. Compos Sci Technol. 2016;126:1–8.

    Article  Google Scholar 

  22. Wang C, Chu YL, Wu YJ. Electrospun isotactic polystyrene nanofibers as a novel β-nucleating agent for isotactic polypropylene. Polymer. 2012;53:5404–12.

    Article  CAS  Google Scholar 

  23. Thomason JL, Van Rooyen AA. Transcrystallized interphase in thermoplastic composites. Part I Influence of fibre type and crystallization temperature. J Mater Sci. 1992;27:889–96.

    Article  CAS  Google Scholar 

  24. Hiejima Y, Takeda K, Nitta K. Investigation of the molecular mechanisms of melting and crystallization of isotactic polypropylene by in situ Raman spectroscopy. Macromolecules. 2017;50:5867–76.

    Article  CAS  Google Scholar 

  25. Chalmers JM, Edwards HGM, Lees JS, Long DA, Mackenzie MW, Willis HA. Raman spectra of polymorphs of isotactic polypropylene. J Raman Spectrosc. 1991;22:613–8.

    Article  CAS  Google Scholar 

  26. Nielsen AS, Batchelder DN, Pyrza R. Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer. 2002;43:2671–6.

    Article  CAS  Google Scholar 

  27. Minogianni C, Gatos KG, Galiotis C. Estimation of crystallinity in isotropic isotactic polypropylene with Raman spectroscopy. Appl Spectrosc. 2005;59:1141–7.

    Article  CAS  PubMed  Google Scholar 

  28. Martin J, Bourson P, Dahoun A, Hiver JM. The beta-spherulite morphology of isotactic polypropylene investigated by Raman spectroscopy. Appl Spectrosc. 2009;63:1377–81.

    Article  CAS  PubMed  Google Scholar 

  29. Furukawa T, Sato H, Kita Y, Matsukawa K, Ochiai S, Siesler HW, et al. Molecular structure, crystallinity and morphology of polyethylene/polypropylene blends studied by Raman mapping, scanning electron microscopy, wide angle X-ray diffraction, and differential scanning calorimetry. Polym J. 2006;38:1127–36.

    Article  CAS  Google Scholar 

  30. Kobayashi D, Hsieh YT, Takahara A. Interphase structure of carbon fiber reinforced polyamide 6 revealed by microbeam X-ray diffraction with synchrotron radiation. Polymer. 2016;89:154–8.

    Article  CAS  Google Scholar 

  31. Uematsu H, Naganawa R, Higashitani N, Yamaguchi A, Yamane M, Ozaki Y, et al. Interfacial shear strength and interaction between polycarbonate and reinforcement fibers. Polymer. 2021;213:123301.

    Article  CAS  Google Scholar 

  32. Uematsu H, Kawasaki T, Yamaguchi A, Sugihara S, Yamane M, Kawabe K, et al. Relationship between crystalline structure of polyamide 6 within carbon fibers and their mechanical properties studied using micro-Raman spectroscopy. Polymer. 2021;223:123711.

    Article  CAS  Google Scholar 

  33. Uematsu H, Mune K, Nishimura S, Koizumi K, Yamaguchi A, Sugihara S, et al. Fracture properties of quasi-Isotropic carbon-fiber-reinforced polyamide 6 laminates with different crystal structure of polyamide 6 due to surface profiles of carbon fibers. Compos Part A. 2022;154:106752.

    Article  CAS  Google Scholar 

  34. Dudi ćD, Djokovi ćV, Kostoski D. The high temperature secondary crystallisation of aged isotactic polypropylene. Polym Test. 2004;23:621–7.

    Article  Google Scholar 

  35. Mandelkemn L, Alamo RG, Mark JE. Physical properties of polymers handbook: Aip Press, Woodbury, New York; 1996. p. 55.

  36. Costa HM, Ramos VD, Oliveira MG. Degradation of polypropylene (PP) during multiple extrusions: thermal analysis, mechanical properties and analysis of variance. Polym Test. 2007;26:676–84.

    Article  Google Scholar 

  37. D’Aniello C, Guadagno L, Gorrasi G, Vittoria V. Influence of the crystallinity on the transport properties of isotactic polypropylene. Polymer. 2000;41:2515–9.

    Article  Google Scholar 

  38. Zhang G, Sun S, Yang D, Dodelet JP, Sacher E. The surface analytical characterization of carbon fibers functionalized by H2SO4 /HNO3 treatment. Carbon. 2008;46:196–205.

    Article  CAS  Google Scholar 

  39. Dai Z, Shi F, Zhang B, Li M, Zhang Z. Effect of sizing on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Appl Surf Sci. 2011;257:6980–5.

    Article  CAS  Google Scholar 

  40. Jiang S, Li Q, Zhao Y, Wang J, Kang M. Effect of surface silanization of carbon fiber on mechanical properties of carbon fiber reinforced polyurethane composites. Compos Sci Technol. 2015;110:87–94.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI [Grant Numbers JP18K14001 and 21H01634].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Uematsu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uematsu, H., Nishimura, S., Yamaguchi, A. et al. Growth of polypropylene crystals in the vicinity of carbon fibers and improvement of their interfacial shear strength. Polym J 54, 667–677 (2022). https://doi.org/10.1038/s41428-022-00622-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00622-2

This article is cited by

Search

Quick links