Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Determination of monomer reactivity ratios from a single sample using multivariate analysis of the 1H NMR spectra of poly[(methyl methacrylate)-co-(benzyl methacrylate)]

Abstract

Copolymers of methyl methacrylate (MMA) and benzyl methacrylate (BnMA) were prepared by conventional radical copolymerization in toluene at 70 °C. The 1H nuclear magnetic resonance (NMR) spectra of these copolymers were measured in various solvents at different temperatures. The signals of the methoxy protons in the MMA units and the benzyl protons in the BnMA units showed splitting mainly because of the triad monomer sequences when the temperature was increased to 150 °C in deuterated dimethyl sulfoxide. However, the splitting was not sufficient to determine the molar ratios of the triad sequences. Therefore, multivariate analysis was applied to the 1H NMR spectra of copolymers with various chemical compositions. Principal component analysis successfully extracted information on the polymer microstructures. Partial least-squares (PLS) regression successfully predicted the mole fractions of the diad monomer sequences. Then, the fractions of the diad sequences in an unknown sample prepared in benzene at 60 °C were predicted using PLS regression to determine the monomer reactivity ratios. Thus, the monomer reactivity ratios were successfully determined from a single sample using multivariate analysis of the 1H NMR spectra of copolymers of MMA and BnMA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mayo FR, Lewis FM. Copolymerization. I. A basis for comparing the behavior of monomers in copolymerization; the copolymerization of styrene and methyl methacrylate. J Am Chem Soc. 1944;66:1594–601.

    Article  CAS  Google Scholar 

  2. Fineman M, Ross SD. Linear method for determining monomer reactivity ratios in copolymerization. J Polym Sci. 1950;5:259–62.

    Article  CAS  Google Scholar 

  3. Behnken DW. Estimation of copolymer reactivity ratios: an example of nonlinear estimation. J Polym Sci Part A: Gen Pap. 1964;2:645–68.

    Google Scholar 

  4. Tidwell PW, Mortimer GA. An improved method of calculating copolymerization reactivity ratios. J Polym Sci Part A: Gen Pap. 1965;3:369–87.

    CAS  Google Scholar 

  5. Kelen T, Tüdõs F. Analysis of the linear methods for determining copolymerization reactivity ratios. I. A new improved linear graphic method. J Macromol Sci A. 1975;9:1–27.

    Article  Google Scholar 

  6. Chûjô R. Information on polymerization mechanism and NMR spectroscopy of high polymers. J Phys Soc Jpn. 1966;21:2669–73.

    Article  Google Scholar 

  7. Johnsen VU, Kolbe K. Bestimmung der copolymerisationsparameter und depolymerisationskonstanten von methylmethacrylat-acrylnitril-copolymeren durch protonenspinresonanz. Makromol Chem. 1968;116:173–89.

    Article  CAS  Google Scholar 

  8. Chujo R, Ubara H, Nishioka A. Determination of monomer reactivity ratios in copolymerization from a single sample and its application to the acrylonitrile-methyl methacrylate system. Polym J. 1972;3:670–4.

    Article  CAS  Google Scholar 

  9. Cattiaux J, Suzuki T, Harwood HJ. Methoxy and methine proton resonances of acrylonitrile-methyl methacrylate copolymers. J Appl Polym Sci: Appl Polym Symp. 1978;34:1–15.

    CAS  Google Scholar 

  10. Gerken TA, Ritchey WM. Determination of the monomer sequencing and microstructure of acrylonitrile copolymers by carbon-13 NMR. I. Acrylonitrile-methyl methacrylate and acrylonitrile-ethyl methacrylate copolymers. J Appl Polym Sci: Appl Polym Symp. 1978;34:17–34.

    CAS  Google Scholar 

  11. Hatada K, Kitayama T, Terawaki Y, Sato H, Chujo R, Tanaka Y, et al. NMR measurement of identical polymer samples by round Robin Method IV. Analysis of composition and monomer sequence distribution in poly(methyl methacrylate-co-acrylonitrile) leading to determinations of monomer reactivity ratios. Polym J. 1995;27:1104–12.

    Article  CAS  Google Scholar 

  12. Jo YS, Inoue Y, Chujo R, Saito K, Miyata S. Carbon-13 NMR analysis of microstructure in the highly piezoelectric copolymer vinylidene cyanide-vinyl acetate. Macromolecules. 1985;18:1850–5.

    Article  CAS  Google Scholar 

  13. Bovey FA. High resolution NMR of macromolecules. Academic Press; New York; 1972.

  14. Hatada K, Kitayama T. NMR Spectroscopy of polymers. 222 Springer; Berlin; 2004.

  15. Moritani T, Fujiwara Y. 13C- and 1H-NMR investigations of sequence distribution in vinyl alcohol-vinyl acetate copolymers. Macromolecules. 1977;10:532–5.

    Article  CAS  Google Scholar 

  16. Brar AS, Malhotra M. Compositional assignments and sequence distribution of vinylidene chloride−methyl acrylate copolymers using one- and two-dimensional NMR spectroscopy. Macromolecules. 1996;29:7470–6.

    Article  CAS  Google Scholar 

  17. Yamazaki H, Okajima K, Kamide K. Full assignment of cyano- and methine-carbon peaks in 50 MHz 13C NMR spectrum and determination of sequence distribution of acrylonitrile/ vinylidene chloride copolymer. Polym J. 1988;20:1143–56.

    Article  CAS  Google Scholar 

  18. Nishiura T, Kitayama T, Hatada K. Carbon-13 NMR spectra of stereoregular copolymers of methyl and butyl methacrylates. Int J Polym Anal Charact. 2000;5:401–13.

    Article  CAS  Google Scholar 

  19. Kitayama T, Ute K, Yamamoto M, Fujimoto N, Hatada K. Highly isotactic and living polymerization of ethyl methacrylate with t-C4H9MgBr in toluene and the preparation of block and random copolymers with high stereoregularity. Polym J. 1990;22:386–96.

    Article  CAS  Google Scholar 

  20. Hirano T, Miyamoto Y, Amano S, Tatsumi K, Anmoto T, Kimura H, et al. Hydrogen-bond-assisted isotactic-specific radical polymerization of N-vinyl-2-pyrrolidone with tartrate additives in toluene at low temperatures: high-resolution 1H NMR analysis. RSC Adv. 2014;4:53079–89.

    Article  CAS  Google Scholar 

  21. Momose H, Hattori K, Hirano T, Ute K. Multivariate analysis of 13C NMR spectra of methacrylate copolymers and homopolymer blends. Polymer. 2009;50:3819–21.

    Article  CAS  Google Scholar 

  22. Momose H, Maeda T, Hattori K, Hirano T, Ute K. Statistical determination of chemical composition and monomer sequence distribution of poly(methyl methacrylate-co-tert-butyl methacrylate)s by multivariate analysis of 13C NMR spectra. Polym J. 2012;44:808–14.

    Article  CAS  Google Scholar 

  23. Hirano T, Anmoto T, Umezawa N, Momose H, Katsumoto Y, Oshimura M, et al. Application of multivariate analysis of NMR spectra of poly(N-isopropylacrylamide) to assignment of stereostructures and prediction of tacticity distribution. Polym J. 2012;44:815–20.

    Article  CAS  Google Scholar 

  24. Hirano T, Kamiike R, Hsu Y, Momose H, Ute K. Multivariate analysis of 13C NMR spectra of branched copolymers prepared by initiator-fragment incorporation radical copolymerization of ethylene glycol dimethacrylate and tert-butyl methacrylate. Polym J. 2016;48:793–800.

    Article  CAS  Google Scholar 

  25. Hsu Y, Chuang M, Hirano T, Ute K. Multivariate analysis of 13C NMR spectra to extract information about monomer sequences in poly(methyl methacrylate-co-benzyl methacrylate)s prepared by various polymer reactions. Polym J. 2018;50:355–63.

    Article  CAS  Google Scholar 

  26. Ting JM, Navale TS, Bates FS, Reineke TM. Precise compositional control and systematic preparation of multimonomeric statistical copolymers. ACS Macro Lett. 2013;2:770–4.

    Article  CAS  Google Scholar 

  27. Wamsley A, Jasti B, Phiasivongsa P, Li X. Synthesis of random terpolymers and determination of reactivity ratios of N-carboxyanhydrides of leucine, β-benzyl aspartate, and valine. J Polym Sci Part A: Polym Chem. 2004;42:317–25.

    Article  CAS  Google Scholar 

  28. Ito K, Yamashita Y. Copolymer composition and microstructure. J Polym Sci Part A: Gen Pap. 1965;3:2165–87.

    CAS  Google Scholar 

  29. Ito K, Yamashita Y. High-resolution N.M.R. study of benzyl methacrylate-methyl methacrylate and benzyl methacrylate-styrene copolymers. Kogyo Kagaku Zasshi. 1965;68:1469.

    Article  CAS  Google Scholar 

  30. Coote ML, Davis TP, Klumperman B, Monteiro MJ. A mechanistic perspective on solvent effects in free-radical copolymerization. J Macromol Sci C. 1998;38:567–93.

    Article  Google Scholar 

  31. de la Fuente JL, López Madruga E. Solvent effects on the free-radical copolymerization of butyl acrylate with methyl methacrylate. Macromol Chem Phys. 1999;200:1639–43.

    Article  Google Scholar 

  32. Ito T, Otsu T. Solvent effect in radical copolymerization of methyl methacrylate with styrene. J Macromol Sci A. 1969;3:197–203.

    Article  CAS  Google Scholar 

  33. Fernández-García M, Fernández-Sanz M, Madruga EL, Cuervo-Rodriguez R, Hernández-Gordo V, Fernández-Monreal MC. Solvent effects on the free-radical copolymerization of styrene with butyl acrylate. I. Monomer reactivity ratios. J Polym Sci Part A: Polym Chem. 2000;38:60–7.

    Article  Google Scholar 

Download references

Funding

This work was supported in part by JSPS KAKENHI Grant Number JP23750130. Victoria Muir, PhD, from Edanz (https://jp.edanz.com/ac) edited a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Hirano.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirano, T., Kamiike, R., Yuki, T. et al. Determination of monomer reactivity ratios from a single sample using multivariate analysis of the 1H NMR spectra of poly[(methyl methacrylate)-co-(benzyl methacrylate)]. Polym J 54, 623–631 (2022). https://doi.org/10.1038/s41428-022-00618-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00618-y

This article is cited by

Search

Quick links