Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Crystallization behavior of isotactic polypropylene containing a fibrous nucleating agent in a flow field

Abstract

The crystallization behavior of isotactic polypropylene containing a fibrous nucleating agent in a flow field was investigated using a polarized optical microscope equipped with a parallel-plate shear device. The addition of the fibrous nucleating agent greatly enhanced the crystallization rate, although isotactic polypropylene crystallization without the nucleating agent was enhanced after exposure to shear flow at a high shear rate. The sample with the nucleating agent demonstrated high molecular orientation to the flow direction after shear flow, even at a low shear rate. This was attributed to the formation of a pseudo shish-kebab structure, in which the fibrous nucleating agent acts as the shish. Moreover, the high level of molecular orientation without spherulitic morphology was responsible for the reduced light scattering, which resulted in good transparency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pasquini N, editor. Polypropylene handbook. 2nd ed. Hanser, Munich; 2005.

  2. Karger-Kocsis J, Tamas B, editors. Polypropylene handbook. Morphology, blends and composites. Springer Nature, Cham; 2019.

  3. Ward IW, editor. Structure and properties of orientation polymer. Chapman & Hall, London; 1975.

  4. Balzano L, Kukalyekar N, Rastogi S, Peters GWM, Chadwick JC. Crystallization and dissolution of flow-induced precursors. Phys Rev Lett. 2008;100:048302.

    Article  Google Scholar 

  5. Mykhaylyk OO, Chambon P, Impradice C, Fairclough JPA, Terrill NJ, Ryan AJ. Control of structural morphology in shear-induced crystallization of polymers. Macromolecules. 2010;43:2389–405.

    Article  CAS  Google Scholar 

  6. Hamad FG, Colby RH, Milner ST. Onset of flow-induced crystallization kinetics of highly isotactic polypropylene. Macromolecules. 2015;48:3725–38.

    Article  CAS  Google Scholar 

  7. Wingstrand SL, Shen B, Kornfield JA, Mortensen K, Parisi D, Vlassopoulos D, et al. Rheological link between polymer melts with a high molecular weight tail and enhanced formation of shish-kebabs. ACS Macro Lett. 2017;6:1268–73.

    Article  CAS  Google Scholar 

  8. Zhang Q, Li L, Su F, Ji Y, Ali S, Zhao H, et al. From molecular entanglement network to crystal-cross-linked network and crystal scaffold during film blowing of polyethylene: an in situ synchrotron radiation small- and wide-angle x‑ray scattering study. Macromolecules. 2018;51:4350–62.

    Article  CAS  Google Scholar 

  9. Nazari B, Tran H, Beauregard B, Flynn-Hepford M, Harrell D, Milner ST, et al. Two distinct morphologies for semicrystalline isotactic polypropylene crystallized after shear flow. Macromolecules. 2018;51:4750–61.

    Article  CAS  Google Scholar 

  10. Balzano L, Rastogi S, Peters GWM. Flow induced crystallization in isotactic polypropylene-1,3:2,4-bis(3,4-dimethylbenzylidene)sorbitol blends: implications on morphology of shear and phase separation. Macromolecules. 2008;41:399–408.

    Article  CAS  Google Scholar 

  11. Phulkerd P, Nakabayashi T, Iwasaki S, Yamaguchi M. Enhancement of drawdown force in polypropylene containing nucleating agent. J Appl Polym Sci. 2018;136:47295.

    Article  Google Scholar 

  12. Iwasaki S, Inoue M, Takei Y, Nishikawa R, Yamaguchi M. Modulus enhancement of polypropylene by sorbitol nucleating agent in flow field. Polym Crystallization. 2021;4:e10170.

    CAS  Google Scholar 

  13. Shepard TA, Delsorbo CR, Louth RM, Walborn JL, Norman DA, Harvey NG, et al. Self-organization and polyolefin nucleation efficacy of 1,3:2,4-di-p-methylbenzylidene sorbitol. J Polym Sci B Polym Phys. 1997;35:2617–28.

    Article  CAS  Google Scholar 

  14. Tenma M, Yamaguchi M. Structure and properties of injection-molded polypropylene with sorbitol-based clarifer. Polym Eng Sci. 2007;47:1441–6.

    Article  CAS  Google Scholar 

  15. Yamaguchi M, Fukui T, Okamoto K, Sasaki S, Uchiyama Y, Ueoka C. Anomalous molecular orientation of isotactic polypropylene sheet containing N,N’-dicyclohexyl-2,6-naphthalenedicarboxamide. Polymer. 2009;50:1497–504.

    Article  CAS  Google Scholar 

  16. Phillips AW, Bhatia A, Zhu P, Edward G. Shish formation and relaxation insheared isotactic polypropylene containing nucleating particles. Macromolecules. 2011;44:3517–28.

    Article  CAS  Google Scholar 

  17. Patil N, Invigorito C, Gahleitner M, Rastogi S. Influence of a particulate nucleating agent on the quiescent and flow-induced crystallization of isotactic polypropylene. Polymer. 2013;54:5883–91.

    Article  CAS  Google Scholar 

  18. Rungswang W, Thongsak K, Prasansuklarb A, Plailahan K, Saendee P, Rugmai S, et al. Effects of sodium salt and sorbitol-derivative nucleating agents on physical properties related to crystal structure and orientation of polypropylene. Ind Eng Chem Res. 2014;53:2331–9.

    Article  CAS  Google Scholar 

  19. Seemork J, Siriprumpoonthum M, Lee Y, Nobukawa S, Yamaguchi M. Effect of die geometry on drawdown force of polypropylene at capillary extrusion. Adv Polym Technol. 2015;34:21477.

    Article  Google Scholar 

  20. Iwasaki S, Uchiyama Y, Tenma M, Yamaguchi M. Effect of neutralizer on transparency of nucleating agent-containing polypropylene. Polymers. 2021;13:680.

    Article  CAS  Google Scholar 

  21. Tenma M, Mieda N, Takmatsu S, Yamaguchi M. Structure and properties for transparent polypropylene containing sorbitol-based clarifier,. J Polym Sci B Polym Phys. 2008;46:41–47.

    Article  CAS  Google Scholar 

  22. Nishikawa R, Yamaguchi M. Effect of carbon nanotube addition on structure and properties for extrudates of high-density polyethylene. J Appl Polym Sci. 2019;136:48010.

    Article  Google Scholar 

  23. Nishikawa R, Aridome N, Ojima N, Yamaguchi M. Structure and properties of fiber-reinforced polypropylene prepared by direct incorporation of aqueous solution of poly(vinyl alcohol). Polymer. 2020;199:122566.

    Article  CAS  Google Scholar 

  24. Born M, Wolf E, editors. Principles of optics. 7th ed. Cambridge University Press, Cambridge; 1990.

  25. Nesse WD, editor. Introduction of optical mineralogy. 2nd ed. Oxford University Press, Oxford; 1991.

  26. Masuko T, Tanaka H, Okajima S. Studies on biaxial stretching of polypropylene film. IV. Overall orientation during one-step biaxial stretching and its application to the estimation of the principal refractive indices of isotactic polypropylene. J Polym Sci A-2. 1970;8:1565–74.

    Article  CAS  Google Scholar 

  27. Kato T. A method to synthesize interference color chart with personal computer. J Geol Soc Jpn. 2001;107:64–67.

    Article  Google Scholar 

  28. Norris FH, Stein RS. The scattering of light from thin polymer films. IV. Scattering from oriented polymers. J Polym Sci. 1958;22:87–115.

    Article  Google Scholar 

  29. Yamaguchi M, Irie Y, Phulkerd P, Hagihara H, Hirayama S, Sasaki S. Plywood-like structure of injection-moulded polypropylene. Polymer. 2010;51:5983–9.

    Article  CAS  Google Scholar 

  30. Wilchinsky ZW. Measurement of orientation in polypropylene film. J Appl Phys. 1960;31:1969–72.

    Article  CAS  Google Scholar 

  31. Tanaka M, Young RJ. Molecular orientation distributions in uniaxially oriented poly(L-lactic acid) films determined by polarized Raman spectroscopy. Macromolecules. 2006;39:3312–21.

    Article  CAS  Google Scholar 

  32. Arvidson SA, Khan SA, Gorga RE. Mesomorphic-α-monoclinic phase transition in isotactic polypropylene: a Study of processing effects on structure and mechanical properties. Macromolecules. 2010;43:2916–24.

    Article  CAS  Google Scholar 

  33. Parthasarthy G, Sevegney M, Kannan RM. Rheooptical Fourier transform infrared spectroscopy of the deformation behavior in quenched and slow-cooled isotactic polypropylene films. J Polym Sci B Polym Phys. 2002;40:2539–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Yamaguchi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janchai, K., Kida, T., Inoue, T. et al. Crystallization behavior of isotactic polypropylene containing a fibrous nucleating agent in a flow field. Polym J 54, 367–375 (2022). https://doi.org/10.1038/s41428-021-00596-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00596-7

This article is cited by

Search

Quick links