Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Phosphorylase-catalyzed synthesis and self-assembled structures of cellulose oligomers in the presence of protein denaturants

Abstract

The self-assembly of biomolecules is an important strategy for fabricating structurally ordered artificial nanomaterials. Various biopolymers have been utilized as self-assembling material components. However, crystalline polysaccharides, such as cellulose and chitin, have rarely been focused on as components for self-assembly, possibly due to their complicated chemical synthesis and low solubility in various solvents even though their stable and robust characteristics are observed in nature. Therefore, the development of methods to control the self-assembled structures of cellulose has the potential to extend the applicability of crystalline polysaccharides in materials science and engineering. In this study, we investigated the cellodextrin phosphorylase-catalyzed synthesis and self-assembled structures of cellulose oligomers in the presence of protein denaturants. The modulation of intermolecular interactions between oligomers by protein denaturants under adequate synthesis conditions resulted in the production of oligomers with greater degrees of polymerization and different crystal structures. Our findings will be significant as fundamental knowledge to artificially construct cellulose assemblies toward novel cellulosic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stupp SI, LeBonheur V, Walker K, Li LS, Huggins KE, Keser M, et al. Supramolecular materials: self-organized nanostructures. Science. 1997;276:384–9.

    Article  CAS  PubMed  Google Scholar 

  2. Whitesides GM, Grzybowski B. Self-assembly at all scales. Science. 2002;295:2418–21.

    Article  CAS  PubMed  Google Scholar 

  3. Aida T, Meijer EW, Stupp SI. Functional supramolecular polymers. Science. 2012;335:813–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mattia E, Otto S. Supramolecular systems chemistry. Nat Nanotechnol. 2015;10:111–9.

    Article  CAS  PubMed  Google Scholar 

  5. Amabilino DB, Smith DK, Steed JW. Supramolecular materials. Chem Soc Rev. 2017;46:2404–20.

    Article  CAS  PubMed  Google Scholar 

  6. Komiyama M, Yoshimoto K, Sisido M, Ariga K. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull Chem Soc Jpn. 2017;90:967–1004.

    Article  Google Scholar 

  7. Seeman NC, Sleiman HF. DNA nanotechnology. Nat Rev Mater. 2018;3:17068.

    Article  CAS  Google Scholar 

  8. Hamada S, Luo D. Enzyme-based fabrication of physical DNA hydrogels: new materials and applications. Polym J. 2020;52:891–8.

    Article  CAS  Google Scholar 

  9. Gatto E, Venanzi M. Self-assembled monolayers formed by helical peptide building blocks: a new tool for bioinspired nanotechnology. Polym J. 2013;45:468–80.

    Article  CAS  Google Scholar 

  10. De Santis E, Ryadnov MG. Peptide self-assembly for nanomaterials: the old new kid on the block. Chem Soc Rev. 2015;44:8288–300.

    Article  PubMed  Google Scholar 

  11. Abbas M, Zou QL, Li SK, Yan XH. Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy. Adv Mater. 2017;29:1605021.

    Article  Google Scholar 

  12. Tsutsumi H, Matsubara D, Mihara H. Functionalization of self-assembling peptide materials using molecular recognition of supramolecular peptide nanofibers. Polym J. 2020;52:913–22.

    Article  CAS  Google Scholar 

  13. Arakawa H, Takeda K, Higashi SL, Shibata A, Kitamura Y, Ikeda M. Self-assembly and hydrogel formation ability of Fmoc-dipeptides comprising α-methyl-L-phenylalanine. Polym J. 2020;52:923–30.

    Article  CAS  Google Scholar 

  14. Luo Q, Hou CX, Bai YS, Wang RB, Liu JQ. Protein assembly: versatile approaches to construct highly ordered nanostructures. Chem Rev. 2016;116:13571–632.

    Article  CAS  PubMed  Google Scholar 

  15. Sawada T, Serizawa T. Filamentous viruses as building blocks for hierarchical self-assembly toward functional soft materials. Bull Chem Soc Jpn. 2018;91:455–66.

    Article  CAS  Google Scholar 

  16. Numata K. How to define and study structural proteins as biopolymer materials. Polym J. 2020;52:1043–56.

    Article  CAS  Google Scholar 

  17. Shimizu T. Self-assembly of discrete organic nanotubes. Bull Chem Soc Jpn. 2018;91:623–68.

    Article  CAS  Google Scholar 

  18. Barriga HMG, Holme MN, Stevens MM. Cubosomes: the next generation of smart lipid nanoparticles? Angew Chem Int Ed. 2019;58:2958–78.

    Article  CAS  Google Scholar 

  19. Sasaki Y, Akiyoshi K. Design and function of smart biomembrane nanohybrids for biomedical applications: review. Polym J. 2021;53:587–92.

    Article  CAS  Google Scholar 

  20. Ifuku S, Saimoto H. Chitin nanofibers: preparations, modifications, and applications. Nanoscale. 2012;4:3308–18.

    Article  CAS  PubMed  Google Scholar 

  21. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941–94.

    Article  CAS  PubMed  Google Scholar 

  22. Yataka Y, Suzuki A, Iijima K, Hashizume M. Enhancement of the mechanical properties of polysaccharide composite films utilizing cellulose nanofibers. Polym J. 2020;52:645–53.

    Article  CAS  Google Scholar 

  23. Kobayashi S, Kashiwa K, Kawasaki T, Shoda S. Novel method for polysaccharide synthesis using an enzyme: the first in vitro synthesis of cellulose via a nonbiosynthetic path utilizing cellulase as catalyst. J Am Chem Soc. 1991;113:3079–84.

    Article  CAS  Google Scholar 

  24. Lee JH, Brown RM, Kuga S, Shoda S, Kobayashi S. Assembly of synthetic cellulose I. Proc Natl Acad Sci USA. 1994;91:7425–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Egusa S, Kitaoka T, Goto M, Wariishi H. Synthesis of cellulose in vitro by using a cellulase/surfactant complex in a nonaqueous medium. Angew Chem Int Ed. 2007;46:2063–5.

    Article  CAS  Google Scholar 

  26. Samain E, Lancelon-Pin C, Férigo F, Moreau V, Chanzy H, Heyraud A, et al. Phosphorolytic synthesis of cellodextrins. Carbohydr Res. 1995;271:217–26.

    Article  CAS  Google Scholar 

  27. Hiraishi M, Igarashi K, Kimura S, Wada M, Kitaoka M, Samejima M. Synthesis of highly ordered cellulose II in vitro using cellodextrin phosphorylase. Carbohydr Res. 2009;344:2468–73.

    Article  CAS  PubMed  Google Scholar 

  28. Serizawa T, Kato M, Okura H, Sawada T, Wada M. Hydrolytic activities of artificial nanocellulose synthesized via phosphorylase-catalyzed enzymatic reactions. Polym J. 2016;48:539–44.

    Article  CAS  Google Scholar 

  29. Serizawa T, Fukaya Y, Sawada T. Self-assembly of cellulose oligomers into nanoribbon network structures based on kinetic control of enzymatic oligomerization. Langmuir. 2017;33:13415–22.

    Article  CAS  PubMed  Google Scholar 

  30. Nakai H, Kitaoka M, Svensson B, Ohtsubo K. Recent development of phosphorylases possessing large potential for oligosaccharide synthesis. Curr Opin Chem Biol. 2013;17:301–9.

    Article  CAS  PubMed  Google Scholar 

  31. O’Neill EC, Field RA. Enzymatic synthesis using glycoside phosphorylases. Carbohydr Res. 2015;403:23–37.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yataka Y, Sawada T, Serizawa T. Enzymatic synthesis and post-functionalization of two-dimensional crystalline cellulose oligomers with surface-reactive groups. Chem Commun. 2015;51:12525–8.

    Article  CAS  Google Scholar 

  33. Yataka Y, Sawada T, Serizawa T. Multidimensional self-assembled structures of alkylated cellulose oligomers synthesized via in vitro enzymatic reactions. Langmuir. 2016;32:10120–5.

    Article  CAS  PubMed  Google Scholar 

  34. Nohara T, Sawada T, Tanaka H, Serizawa T. Enzymatic synthesis of oligo(ethylene glycol)-bearing cellulose oligomers for in situ formation of hydrogels with crystalline nanoribbon network structures. Langmuir. 2016;32:12520–6.

    Article  CAS  PubMed  Google Scholar 

  35. Nohara T, Sawada T, Tanaka H, Serizawa T. Enzymatic synthesis and protein adsorption properties of crystalline nanoribbons composed of cellulose oligomer derivatives with primary amino groups. J Biomater Sci Polym Ed. 2017;28:925–38.

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Niu J, Sawada T, Shao Z, Serizawa T. A bottom-up synthesis of vinyl-cellulose nanosheets and their nanocomposite hydrogels with enhanced strength. Biomacromolecules. 2017;18:4196–205.

    Article  CAS  PubMed  Google Scholar 

  37. Sugiura K, Sawada T, Tanaka H, Serizawa T. Enzyme-catalyzed propagation of cello-oligosaccharide chains from bifunctional oligomeric primers for the preparation of block co-oligomers and their crystalline assemblies. Polym J. 2021;53:1133–43.

    Article  CAS  Google Scholar 

  38. Hata Y, Fukaya Y, Sawada T, Nishiura M, Serizawa T. Biocatalytic oligomerization-induced self-assembly of crystalline cellulose oligomers into nanoribbon networks assisted by organic solvents. Beilstein J Nanotechnol. 2019;10:1778–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev. 2011;63:1118–59.

    Article  CAS  PubMed  Google Scholar 

  40. Li DF, Caffrey M. Renaturing membrane proteins in the lipid cubic phase, a nanoporous membrane mimetic. Sci Rep. 2014;4:5806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shiraki K, Tomita S, Inoue N. Small amine molecules: solvent design toward facile improvement of protein stability against aggregation and inactivation. Curr Pharm Biotechnol. 2016;17:116–25.

    Article  CAS  Google Scholar 

  42. Mason PE, Brady JW, Neilson GW, Dempsey CE. The interaction of guanidinium ions with a model peptide. Biophys J. 2007;93:L4–L6.

    Article  Google Scholar 

  43. O’Brien EP, Dima RI, Brooks B, Thirumalai D. Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism. J Am Chem Soc. 2007;129:7346–53.

    Article  PubMed  Google Scholar 

  44. Kano F, Shinjo M, Qin ZJ, Li JS, Matsumura Y, Shimizu A, et al. Denaturant-induced helix-coil transition of oligopeptides: theoretical and equilibrium studies of short oligopeptides C17 and AK16. Polym J. 2011;43:293–300.

    Article  CAS  Google Scholar 

  45. Ganguly P, Shea JE. Distinct and nonadditive effects of urea and guanidinium chloride on peptide solvation. J Phys Chem Lett. 2019;10:7406–13.

    Article  CAS  PubMed  Google Scholar 

  46. Mirdha L, Chakraborty H. Fluorescence quenching by ionic liquid as a potent tool to study protein unfolding intermediates. J Mol Liq. 2020;312:113408.

    Article  CAS  Google Scholar 

  47. Zou Q, Habermann-Rottinghaus SM, Murphy KP. Urea effects on protein stability: hydrogen bonding and the hydrophobic effect. Proteins Struct Funct Bioinform. 1998;31:107–15.

    Article  CAS  Google Scholar 

  48. Ganguly P, Polak J, van der Vegt NFA, Heyda J, Shea JE. Protein stability in TMAO and mixed urea-TMAO solutions. J Phys Chem B. 2020;124:6181–97.

    Article  CAS  PubMed  Google Scholar 

  49. Isogai A, Atalla RH. Dissolution of cellulose in aqueous NaOH solutions. Cellulose. 1998;5:309–19.

    Article  CAS  Google Scholar 

  50. Petrovic DM, Kok I, Woortman AJJ, Ciric J, Loos K. Characterization of oligocellulose synthesized by reverse phosphorolysis using different cellodextrin phosphorylases. Anal Chem. 2015;87:9639–46.

    Article  CAS  PubMed  Google Scholar 

  51. Hishikawa Y, Togawa E, Kondo T. Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized FTIR spectra. ACS Omega. 2017;2:1469–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Isogai A, Usuda M, Kato T, Uryu T, Atalla RH. Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules. 1989;22:3168–72.

    Article  CAS  Google Scholar 

  53. French AD. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose. 2014;21:885–96.

    Article  CAS  Google Scholar 

  54. Buleon A, Chanzy H. Single crystals of cellulose IVII: preparation and properties. J Polym Sci B Polym Phys. 1980;18:1209–17.

    Article  CAS  Google Scholar 

  55. Zugenmaier P. Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci. 2001;26:1341–417.

    Article  CAS  Google Scholar 

  56. Serizawa T, Maeda T, Sawada T. Neutralization-induced self-assembly of cellulose oligomers into antibiofouling crystalline nanoribbon networks in complex mixtures. ACS Macro Lett. 2020;9:301–5.

    Article  CAS  Google Scholar 

  57. Serizawa T, Maeda T, Yamaguchi S, Sawada T. Aqueous suspensions of cellulose oligomer nanoribbons for growth and natural filtration-based separation of cancer spheroids. Langmuir 2020;36:13890–8.

    Article  CAS  PubMed  Google Scholar 

  58. Hata Y, Kojima T, Maeda T, Sawada T, Serizawa T. pH-Triggered self-assembly of cellulose oligomers with gelatin into a double-network hydrogel. Macromol Biosci. 2020;20:2000187.

    Article  CAS  Google Scholar 

  59. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282.

    Article  CAS  PubMed  Google Scholar 

  60. Tanford C. Protein denaturation: Part C. Theoretical models for the mechanism of denaturation. Adv Protein Chem. 1970;24:1–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support to T. Serizawa from a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JP18H02029 and JP21H01996) and a Grant-in-Aid for Scientific Research on Innovative Areas (Aquatic Functional Materials) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (JP20H05208). The authors also gratefully acknowledge the technical support for the MALDI-TOF mass spectrometry and WAXD measurements provided by the Open Facility Center, Materials Analysis Division (Tokyo Tech).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Serizawa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakurai, Y., Sawada, T. & Serizawa, T. Phosphorylase-catalyzed synthesis and self-assembled structures of cellulose oligomers in the presence of protein denaturants. Polym J 54, 561–569 (2022). https://doi.org/10.1038/s41428-021-00592-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00592-x

This article is cited by

Search

Quick links