Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Rapid Communication
  • Published:

Facile fabrication of gelatin hydrogels with anisotropic gel properties via self-assembly

Abstract

Using a facile method, a gelatin hydrogel with anisotropic gel properties was prepared on a substrate via hydrogelation to induce self-assembly. The specific structure of the gelatin network of the hydrogel was controlled by changing the specific surface properties of the substrate. The anisotropic swelling and mechanical behavior of the hydrogel were found to be based on its specific structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Meyers MA, Chen P-Y, Lin AY-M, Seki Y. Biological materials: Structure and mechanical properties. Prog Mater Sci. 2008;53:1–206.

    Article  CAS  Google Scholar 

  2. Osada Y, Gong JP. Soft and wet materials: polymer gels. Adv Mater. 1998;10:827–37.

    Article  CAS  Google Scholar 

  3. Takahashi R, Wu ZL, Arifuzzaman M, Nonoyama T, Nakajima T, Kurokawa T, et al. Control superstructure of rigid polyelectrolytes in oppositely charged hydrogels via programmed internal stress. Nat Commun. 2014;5:1–7.

    Article  Google Scholar 

  4. Chau M, France KJD, Kopera B, Machado VR, Rosenfeldt S, Reyes L, et al. Composite hydrogels with tunable anisotropic morphologies and mechanical properties. Chem Mater. 2016;28:3406–15.

    Article  CAS  Google Scholar 

  5. Lu H, Hood MA, Mauri S, Baio JE, Bonn M, Muñoz-Espí R, et al. Biomimetic vaterite formation at surfaces structurally templated by oligo(glutamic acid) peptides. Chem Commun. 2015;51:15902–5.

    Article  CAS  Google Scholar 

  6. Blank S, Arnoldi M, Khoshnavaz S, Treccani L, Kuntz M, Mann K, et al. The nacre protein perlucin nucleates growth of calcium carbonate crystals. J Microsc. 2003;212:280–91.

    Article  CAS  Google Scholar 

  7. Dey A, With G, Sommerdijk NAJM. In situ techniques in biomimetic mineralization studies of calcium carbonate. Chem Soc Rev. 2010;39:397–409.

    Article  CAS  Google Scholar 

  8. Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A. A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci USA. 1996;93:9657–60.

    Article  CAS  Google Scholar 

  9. Gong JP, Katsuyama Y, Kurokawa T, Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003;15:1155–8.

    Article  CAS  Google Scholar 

  10. Gong JP. Why are double network hydrogels so tough? Soft Matter. 2010;6:2583–90.

    Article  CAS  Google Scholar 

  11. Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, et al. High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater. 2004;14:1124–8.

    Article  CAS  Google Scholar 

  12. Haraguchi K, Takehisa T. Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater. 2002;14:1120–4.

    Article  CAS  Google Scholar 

  13. Haraguchi K, Takehisa T, Fan S. Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 2002;35:10162–71.

    Article  CAS  Google Scholar 

  14. Ito K. Novel cross-linking concept of polymer network: synthesis, structure, and properties of slide-ring gels with freely movable junctions. Polym J. 2007;39:489–99.

    Article  CAS  Google Scholar 

  15. Okumura Y, Ito K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater. 2001;13:485–7.

    Article  CAS  Google Scholar 

  16. Nie J, Pei B, Wang Z, Hu Q. Construction of ordered structure in polysaccharide hydrogel: a review. Carbohydr Polym. 2019;205:225–35.

    Article  CAS  Google Scholar 

  17. Zhao Z, Fang R, Rong Q, Liu M. Bioinspired nanocomposite hydrogels with highly ordered structures. Adv Mater. 2017;29:1703045.

    Article  Google Scholar 

  18. Murai K, Kinoshita T, Nagata K, Higuchi M. Mineralization of calcium carbonate on multifunctional peptide assembly acting as mineral source supplier and template. Langmuir. 2016;32:9351–9.

    Article  CAS  Google Scholar 

  19. Murai K, Yamamoto Y, Kinoshita T, Nagata K, Higuchi M. Self-bonding and the electrochemical properties of silica-coated nanowires composed of cobalt-coordinated peptide bundles. J Mater Chem B. 2017;5:5539–48.

    Article  CAS  Google Scholar 

  20. Murai K, Inagaki K, Hiraoka C, Minoshima S, Kinoshita T, Nagata K, et al. Mineralization of magnetic nano-tape in self-organized nanospace composed of nucleopeptide and peptide. CrystEngComm. 2019;21:3557–67.

    Article  CAS  Google Scholar 

  21. Kang H-W, Tabata Y, Ikeda Y. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials. 1999;20:1339–44.

    Article  CAS  Google Scholar 

  22. Sewald L, Claaßen C, Götz T, Claaßen MH, Truffault V, Tovar CEM, et al. Beyond the modification degree: impact of raw material on physicochemical properties of gelatin type A and type B methacryloyls. Macromol Biosci. 2018;18:1800168.

    Article  Google Scholar 

  23. Fitzsimons SM, Mulvihill DM, Morris ER. Segregative interactions between gelatin and polymerized whey protein. Food Hydrocoll. 2008;22:485–91.

    Article  CAS  Google Scholar 

  24. Vlierberghe SV, Vanderleyden E, Dubruel P, Vos FD, Schacht E. Affinity study of novel gelatin cell carriers for fibronectin. Macromol Biosci 2009;9:1105–15.

    Article  Google Scholar 

  25. Dunlop H, Benmalek M. Role and characterization of surfaces in the aluminium industry. J de Phys IV Proc. 1997;07:C6-163–C6174.

    Google Scholar 

  26. Tanahashi M, Matsuda T. Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res A. 1997;34:305–15.

    Article  CAS  Google Scholar 

  27. Dey A, Bomans PHH, Müller FA, Will J, Frederik PM, With G, et al. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater. 2010;9:1010–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SK, AK, YN and KM designed this study and developed the hypothesis. KK, YN and KM performed sample characterization. All authors discussed the results. All authors have read and approved the submitted manuscript.

Corresponding author

Correspondence to Kazuki Murai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawaguchi, K., Komatsu, S., Kikuchi, A. et al. Facile fabrication of gelatin hydrogels with anisotropic gel properties via self-assembly. Polym J 54, 377–383 (2022). https://doi.org/10.1038/s41428-021-00589-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00589-6

Search

Quick links