Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Structure and properties of polysaccharide/imogolite hybrids

Abstract

Polysaccharides and “imogolite” (a natural aluminum silicate nanoclay) were used as building blocks to prepare environmentally benign (organic/inorganic) hybrid materials of natural origin. Cellulose nanocrystals (CNCs), cellulose fibers (CFs), and sacran were employed as polysaccharides. By utilizing oppositely charged organic and inorganic components, polysaccharide/imogolite hybrids were prepared by spin-assisted layer-by-layer assembly and solution blending. The fine dispersion and attractive interactions of imogolite with polysaccharides afforded hybrids with improved physicochemical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rosenau T, Potthast A, Hell J. Cellulose science and technology: chemistry, analysis, and applications, Wiley 2018.

  2. Kadla J, Gilbert R. Cellulose structure: a review. Cellul Chem Technol. 2000;34:197.

    CAS  Google Scholar 

  3. Rol F, Belgacem MN, Gandini A, Bras J. Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci. 2019;88:241–64.

    Article  CAS  Google Scholar 

  4. Habibi Y. Key Advances in the chemical modification of nano-celluloses. Chem Soc Rev. 2014;43:1519–42.

    Article  CAS  PubMed  Google Scholar 

  5. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, et al. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed. 2011;50:5438–66.

    Article  CAS  Google Scholar 

  6. Dong XM, Kimura T, Revol JF, Gray DG. Effects of ionic strength on the phase separation of suspensions of cellulose crystallites. Langmuir. 1996;12:2076–82.

    Article  CAS  Google Scholar 

  7. Tang J, Sisler J, Grishkewich N, Tam KC. Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci. 2017;494:397–409.

    Article  CAS  PubMed  Google Scholar 

  8. Turbak AF, Snyder FW, Sandberg KR. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp. 1983;37:815–23.

    CAS  Google Scholar 

  9. Isogai A. Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci. 2013;59:449–59.

    Article  CAS  Google Scholar 

  10. Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale. 2011;1:71–85.

    Article  Google Scholar 

  11. Kose R, Mitani I, Kasai W, Kondo T. “Nanocellulose” as a single nanofiber prepared from pellicle secreted by gluconacetobacter xylinus using aqueous counter collision. Biomacromolecules. 2011;12:716–20.

    Article  CAS  PubMed  Google Scholar 

  12. Abe K, Iwamoto S, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules. 2007;8:3276–8.

    Article  CAS  PubMed  Google Scholar 

  13. Samir MASA, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 2005;6:612–26.

    Article  CAS  Google Scholar 

  14. Fujisawa S. Material design of nanocellulose/polymer composites via Pickering emulsion templating. Polym J. 2021;53:103–9.

    Article  Google Scholar 

  15. Gabr MH, Phong NT, Abdelkareem MA, Okubo K, Uzawa K, Kimpara I, et al. Mechanical, thermal, and moisture absorption properties of nano-clay reinforced nano-cellulose biocomposites. Cellulose. 2013;20:819–26.

    Article  CAS  Google Scholar 

  16. Okajima MK, Bamba T, Kaneso Y, Hirata K, Fukusaki E, Kajiyama SI, et al. Supergiant ampholytic sugar chains with imbalanced charge ratio form saline ultra-absorbent hydrogels. Macromolecules. 2008;41:4061–4.

    Article  CAS  Google Scholar 

  17. Okajima MK, Kaneko D, Mitsumata T, Kaneko T, Watanabe J. Cyanobacteria that produce megamolecules with efficient self-orientations. Macromolecules. 2009;42:3057–62.

    Article  CAS  Google Scholar 

  18. Cradwick PDG, Farmer VC, Russell JD, Masson CR, Wada K, Yoshinaga N. Imogolite, a hydrated aluminium silicate of tubular structure. Nat Phys Sci. 1972;240:187–9.

    Article  CAS  Google Scholar 

  19. Yoshinaga N, Aomine S. Imogolite in some ando soils. Soil Sci Plant Nutr. 1962;8:22–9.

    Article  Google Scholar 

  20. Ma W, Higaki Y, Takahara A. Imogolite polymer nanocomposites, Elsevier 2016, Vol. 7, pp 628–71.

  21. Yamamoto K, Otsuka H, Takahara A. Preparation of novel polymer hybrids from imogolite nanofiber. Polym J. 2007;39:1–15.

    Article  CAS  Google Scholar 

  22. Paineau E. Imogolite nanotubes: a flexible nanoplatform with multipurpose applications. Appl Sci. 1998;8:1921.

    Article  Google Scholar 

  23. Govan J, Arancibia-Miranda N, Escudey M, Bonelli B, Tasca F. Imogolite: a nanotubular aluminosilicate: synthesis, derivatives, analogues, and general and biological applications. Mater Chem Front. 2021;5:6779–802.

    Article  CAS  Google Scholar 

  24. Yamamoto K, Otsuka H, Wada SI, Takahara A. Surface modification of aluminosilicate nanofiber “imogolite”. Chem Lett. 2001;30:1162–3.

    Article  Google Scholar 

  25. Ma W, Otsuka H, Takahara A. Application of imogolite clay nanotubes in organic–inorganic nanohybrid materials. J Mater Chem. 2012;22:11887–92.

    Article  CAS  Google Scholar 

  26. Mukai M, Takahara M, Takada A, Takahara A. Preparation of (inorganic/organic) hybrid hydrogel from peptide oligomer and tubular aluminosilicate nanofiber. RSC Adv. 2021;11:4901–5.

    Article  CAS  Google Scholar 

  27. Mukai M, Takada A, Hamada A, Kajiwara T, Takahara A. Preparation and characterization of imogolite/chitosan hybrid with pyridoxal-5’-phosphate as an interfacial modifier. RSC Adv. 2021;11:31712–6.

    Article  CAS  Google Scholar 

  28. Jiravanichanun N, Yamamoto K, Yonemura H, Yamada S, Otsuka H, Takahara A. Fabrication of conjugated polymer hybrid thin films with radially oriented aluminosilicate nanofibers by spin-assembly. Bull Chem Soc Jpn. 2008;12:1663–8.

    Article  Google Scholar 

  29. Li LL, Ma W, Higaki Y, Kamitani K, Takahara A. Organic-inorganic hybrid thin film fabricated by layer-by-layer assembly of the phosphorylated cellulose nanocrystal and imogolite nanotubes. Langmuir 2018;34:13361–7.

    Article  CAS  PubMed  Google Scholar 

  30. Iler RK. Multilayers of colloidal particles. J Colloid Interface Sci. 1966;21:569–94.

    Article  CAS  Google Scholar 

  31. Lvov Y, Ariga K, Onda M, Ichinose I, Kunitake T. Alternate assembly of ordered multilayers of SiO2 and other nanoparticles and polyions. Langmuir. 1997;13:6195–203.

    Article  CAS  Google Scholar 

  32. Serizawa T, Yamaguchi M, Akashi M. Alternating bioactivity of polymeric layer-by-Layer assemblies: anticoagulation vs procoagulation of hman blood. Biomacromolecules. 2002;3:724–31.

    Article  CAS  PubMed  Google Scholar 

  33. Mauroy C, Levard C, Moreau C, Vidal V, Rose J, Cathala B. Elaboration of cellulose nanocrystal/Ge-imogolite nanotube multilayered thin films. Langmuir. 2018;34:3386–94.

    Article  CAS  PubMed  Google Scholar 

  34. Yamamoto K, Otsuka H, Takahara A, Wada SI. Preparation of a novel (polymer/inorganic nanofiber) composite through surface modification of natural aluminosilicate nanofiber. J Adhes. 2002;78:591–602.

    Article  CAS  Google Scholar 

  35. Inagaki N, Tomiha K, Katsuura K. Studies on the thermal degradation of phosphorus containing polymers: 7. Thermal degradation of phosphorylated poly (vinyl alcohol). Polymer. 1974;15:335–8.

    Article  CAS  Google Scholar 

  36. Cho J, Char K, Hong JD, Lee KB. Fabrication of highly ordered multilayer films using a spin self-assembly method. Adv Mater. 2001;13:1076.

    Article  CAS  Google Scholar 

  37. Farmer VC, Fraser AR, Tait JM. Synthesis of imogolite: a tubular aluminium silicate polymer. J Chem Soc Chem Commun. 1977;13:462–3.

    Article  Google Scholar 

  38. Li LL, Takada A, Ma W, Fujikawa S, Ariyoshi M, Igata K, et al. Structure and properties of hybrid film fabricated by spin-assisted layer-by-layer assembly of sacran and imogolite nanotubes. Langmuir. 2020;36:1718–26.

    Article  CAS  PubMed  Google Scholar 

  39. Li LL, Ma W, Takada A, Takayama N, Takahara A. Organic–inorganic hybrid films fabricated from cellulose fibers and imogolite nanotubes. Biomacromolecules. 2019;20:3566–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the JSPS Grant-in-Aid for Scientific Research (A) (Grant No. 26248053, 17H01221) and JSPS A3 Project. We acknowledge Prof. Tatsuo Kaneko and Dr. Maiko Okajima for providing the sacran sample. We also thank Dr. Akihiko Takada and Dr. Linlin Li for collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Takahara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higaki, Y., Takahara, A. Structure and properties of polysaccharide/imogolite hybrids. Polym J 54, 473–479 (2022). https://doi.org/10.1038/s41428-021-00588-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00588-7

This article is cited by

Search

Quick links