Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Highly transparent, stretchable, and self‐healing polymers crosslinked by dynamic zinc(II)-poly(amic acid) bonds

Abstract

A novel but simple design is presented of a multi-ion network with polyamic acid that combines high extensibility and toughness with spontaneous healing ability. Taking advantage of the carboxylate structure of polyamic acid, the introduction of a sufficient number of metal ions to neutralize the carboxylated groups can form reversible ionic bonds within the polymeric network. Dry-solid zinc(II)-poly(amic acid-PDMS) is transparent and exhibits good mechanical properties, including good ultimate strength (~0.267 MPa) and high stretchability (~360%). In addition, this dynamic network can self-heal at ambient temperature without requiring stimulation from heat, a plasticizer, or a solvent. The very simple method of our proposed polyamic acid polymers opens up the possibility of increasingly utilizing high-performance, low-cost, and environmentally friendly polyamic acids instead of polyimides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Corzo D, Tostado-Blázquez G, Baran D. Flexible electronics: status, challenges and opportunities. Front Electron. 2020;1:594003–16.

    Article  Google Scholar 

  2. Oh JY, Rondeau-Gagne S, Chiu YC, Chortos A, Lissel F, Wang GN, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature. 2016;539:411–5.

    Article  CAS  Google Scholar 

  3. Zhuang Y, Seong JG, Lee YM. Polyimides containing aliphatic/alicyclic segments in the main chains. Prog Polym Sci. 2019;92:35–88.

    Article  CAS  Google Scholar 

  4. Stephans LE, Myles A, Thomas RR. Kinetics of alkaline hydrolysis of a polyimide surface. Langmuir. 2000;16:4706–10.

    Article  CAS  Google Scholar 

  5. Purushothaman R, Bilal IM, Palanichamy M. Effect of chemical structure of aromatic dianhydrides on the thermal, mechanical and electrical properties of their terpolyimides with 4,4′-oxydianiline. J Polym Res. 2011;18:1597–604.

    Article  CAS  Google Scholar 

  6. Wang DH, Shen Z, Guo M, Cheng SZD, Harris FW. Synthesis and properties of polyimides containing multiple alkyl side chains. Macromolecules. 2007;40:889–900.

    Article  CAS  Google Scholar 

  7. Hsu L-C, Shih C-C, Hsieh H-C, Chiang Y-C, Wu P-H, Chueh C-C, et al. Intrinsically stretchable, solution-processable functional poly(siloxane-imide)s for stretchable resistive memory applications. Polym Chem. 2018;9:5145–54.

    Article  CAS  Google Scholar 

  8. Chen D, Wang D, Yang Y, Huang Q, Zhu S, Zheng Z. Self-healing materials for next-generation energy harvesting and storage devices. Adv Energy Mater. 2017;7:1700890–913.

    Article  Google Scholar 

  9. Kong D, Li J, Guo A, Zhang X, Xiao X. Self-healing high temperature shape memory polymer. Eur Polym J. 2019;120:109279–89.

    Article  Google Scholar 

  10. Kim Y, Nam K-H, Jung YC, Han H. Interfacial adhesion and self-healing kinetics of multi-stimuli responsive colorless polymer bilayers. Compos B Eng. 2020;203:108451–9.

    Article  CAS  Google Scholar 

  11. Zhang L, Wu J, Sun N, Zhang X, Jiang L. A novel self-healing poly(amic acid) ammonium salt hydrogel with temperature-responsivity and robust mechanical properties. J Mater Chem A. 2014;2:7666–8.

    Article  CAS  Google Scholar 

  12. Wang X, Li Y, Qian Y, Qi H, Li J, Sun J. Mechanically robust atomic oxygen-resistant coatings capable of autonomously healing damage in low earth orbit space environment. Adv Mater. 2018;30:1803854–61.

    Article  Google Scholar 

  13. You H, Hossain I, Kim T-H. Piperazinium-mediated crosslinked polyimide-polydimethylsiloxane (PI-PDMS) copolymer membranes: the effect of PDMS content on CO2 separation. RSC Adv. 2018;8:1328–36.

    Article  CAS  Google Scholar 

  14. Meador MA, McMillon E, Sandberg A, Barrios E, Wilmoth NG, Mueller CH, et al. Dielectric and other properties of polyimide aerogels containing fluorinated blocks. ACS Appl Mater Interfaces. 2014;6:6062–8.

    Article  CAS  Google Scholar 

  15. Lai JC, Li L, Wang DP, Zhang MH, Mo SR, Wang X, et al. A rigid and healable polymer cross-linked by weak but abundant Zn(II)-carboxylate interactions. Nat Commun. 2018;9:2725–34.

    Article  Google Scholar 

  16. Miwa Y, Kurachi J, Kohbara Y, Kutsumizu S. Dynamic ionic crosslinks enable high strength and ultrastretchability in a single elastomer. Commun Chem. 2018;1:5–12.

    Article  Google Scholar 

  17. Rao YL, Chortos A, Pfattner R, Lissel F, Chiu YC, Feig V, et al. Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J Am Chem Soc. 2016;138:6020–7.

    Article  CAS  Google Scholar 

  18. Mehravar E, Iturrospe A, Arbe A, Asua JM, Leiza JR. Phase behavior of side-chain liquid-crystalline polymers containing biphenyl mesogens with different spacer lengths synthesized via miniemulsion polymerization. Polym Chem. 2016;7:4736–50.

    Article  CAS  Google Scholar 

  19. Shoji Y, Ishige R, Higashihara T, Watanabe J, Ueda M. Thermotropic liquid crystalline polyimides with siloxane linkages: synthesis, characterization, and liquid crystalline behavior. Macromolecules. 2010;43:805–10.

    Article  CAS  Google Scholar 

  20. Deriabin KV, Ignatova NA, Kirichenko SO, Novikov AS, Islamova RM. Nickel(II)-pyridinedicarboxamide-co-polydimethylsiloxane complexes as elastic self-healing silicone materials with reversible coordination. Polymer. 2021;212:123119–27.

    Article  CAS  Google Scholar 

  21. Arens L, Barther D, Landsgesell J, Holm C, Wilhelm M. Poly(sodium acrylate) hydrogels: synthesis of various network architectures, local molecular dynamics, salt partitioning, desalination and simulation. Soft Matter. 2019;15:9949–64.

    Article  CAS  Google Scholar 

  22. Grady BP, Goossens JGP, Wouters MEL. Morphology of zinc-neutralized maleated ethylene−propylene copolymer ionomers: structure of ionic aggregates as studied by X-ray absorption spectroscopy. Macromolecules. 2004;37:8585–91.

    Article  CAS  Google Scholar 

  23. Ohnishi I, Hashimoto K, Tajima K. Synthesis of diketopyrrolopyrrole-based polymers with polydimethylsiloxane side chains and their application in organic field-effect transistors. R Soc Open Sci. 2018;5:172025–34.

  24. Dalod ARM, Grendal OG, Blichfeld AB, Furtula V, Pérez J, Henriksen L, et al. Structure and optical properties of titania-PDMS hybrid nanocomposites prepared by in situ non-aqueous synthesis. Nanomaterials (Basel). 2017;7:460–75.

    Article  Google Scholar 

  25. Damaschun G. Röntgenographische Untersuchung der Struktur von Silikongummi. Kolloid-Z und Z für Polym. 1962;180:65–7.

    Article  CAS  Google Scholar 

  26. Sun D, Li B-B, Xu Z-L. Preparation and characterization of poly(dimethylsiloxane)-polytetrafluoroethylene (PDMS-PTFE) composite membrane for pervaporation of chloroform from aqueous solution. Korean J Chem Eng. 2013;30:2059–67.

    Article  CAS  Google Scholar 

  27. Zhang Q, Shi C-Y, Qu D-H, Long Y-T, Feringa BL, Tian H. Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Sci Adv. 2018;4:eaat8192.

    Article  CAS  Google Scholar 

  28. Akhuli B, Cera L, Jana B, Saha S, Schalley CA, Ghosh P. Formation and transmetalation mechanisms of homo- and heterometallic (Fe/Zn) trinuclear triple-stranded side-by-side helicates. Inorg Chem. 2015;54:4231–42.

    Article  CAS  Google Scholar 

  29. Yu K, Xin A, Feng Z, Lee KH, Wang Q. Mechanics of self-healing thermoplastic elastomers. J Mech Phys Solids. 2020;137:103831–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Featured Area Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (110L9006) and the Ministry of Science and Technology in Taiwan (MOST 110-2634-F-002-043, MOST 109-2221-E-011-150, and MOST 110-2221-E-011-009) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Cheng Chiu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Au-Duong, AN., Hsu, YC., Malintoi, M. et al. Highly transparent, stretchable, and self‐healing polymers crosslinked by dynamic zinc(II)-poly(amic acid) bonds. Polym J 54, 305–312 (2022). https://doi.org/10.1038/s41428-021-00579-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00579-8

Search

Quick links