Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Catalyst-transfer system in stoichiometry-independent AA+BB-type Migita–Kosugi–Stille coupling polycondensation using ester-functionalized dibromo monomer

Abstract

Catalyst-transfer systems have emerged in the condensative chain polymerization of AB-type monomers and stoichiometry-independent polycondensation of AA- and BB-type monomers to synthesize π-conjugated polymers. Although catalyst-transfer polycondensation (CTP) systems have often been explained by a ring-walking process of catalytic metals with a main chain, the functional-group effect of aromatic monomers on such CTP phenomena is unclear. In this study, stoichiometry-independent Migita–Kosugi–Stille coupling polycondensation was performed between 2,5-bis(trimethylstannyl)thiophene and an ester-functionalized dibromo monomer, which is bis(2-butyloctyl) 2,5-dibromoterephthalate, to obtain high-molecular-weight π-conjugated poly(phenylene thienylene) (Mn = 16,800). The method uses a 2-fold excess of the dibromo monomer toward the distannylated monomer. Such successful nonstoichiometric polycondensation may be derived from the intramolecular Pd(0) catalyst transfer on the aromatic dibromo monomer after the first coupling reaction between the dibromo monomer and stannylated compounds during polymerization. The results of model reactions and DFT calculations using ester-, ether- and alkyl-functionalized dibromo compounds suggest that incorporating the ester-carbonyl group into aromatic dibromo monomers is a key molecular design strategy to realize an efficient intramolecular Pd(0) catalyst-transfer system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Scheme 3
Fig. 1

Similar content being viewed by others

References

  1. Kline RJ, Mcgehee MD, Kadnikova EN, Liu J, Fréchet JMJ. Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv Mater. 2003;15:1519–22.

    Article  CAS  Google Scholar 

  2. Bartelt JA, Douglas JD, Mateker WR, Labban AE, Tassone CJ, Toney MF, et al. Controlling solution-phase polymer aggregation with molecular weight and solvent additives to optimize polymer-fullerene bulk heterojunction solar cells. Adv Energy Mater. 2014;4:1301733.

    Article  Google Scholar 

  3. Yokoyama A, Miyakoshi R, Yokozawa T. Chain-growth polymerization for poly(3-hexylthiophene) with a defined molecular weight and a low polydispersity. Macromolecules. 2004;37:1169–71.

    Article  CAS  Google Scholar 

  4. Sheina EE, Liu J, Iovu MC, Laird DW, Mccullough RD. Chain growth mechanism for regioregular nickel-initiated cross-coupling polymerizations. Macromolecules. 2004;37:3526–8.

    Article  CAS  Google Scholar 

  5. Miyakoshi R, Shimono K, Yokoyama A, Yokozawa T. Catalyst-transfer polycondensation for the synthesis of poly(p-phenylene) with controlled molecular weight and low polydispersity. J Am Chem Soc. 2006;128:16012–3.

    Article  CAS  Google Scholar 

  6. Yokoyama A, Suzuki H, Kubota Y, Ohuchi K, Higashimura H, Yokozawa T. Chain-growth polymerization for the synthesis of polyfluorene via Suzuki−Miyaura coupling reaction from an externally added initiator unit. J Am Chem Soc. 2007;129:7236–7.

    Article  CAS  Google Scholar 

  7. Bridges CR, Mccormick TM, Gibson GL, Hollinger J, Seferos DS. Designing and refining Ni(II)diamine catalysts toward the controlled synthesis of electron-deficient conjugated polymers. J Am Chem Soc. 2013;135:13212–9.

    Article  CAS  Google Scholar 

  8. Tkachov R, Karpov Y, Senkovskyy V, Raguzin I, Zessin J, Lederer A, et al. Efficient tin-free route to a donor–acceptor semiconducting copolymer with variable molecular weights. Macromolecules. 2014;47:3845–51.

    Article  CAS  Google Scholar 

  9. Yokozawa T, Ohta Y. Transformation of step-growth polymerization into living chain-growth polymerization. Chem Rev. 2016;116:1950–68.

    Article  CAS  Google Scholar 

  10. Leone AK, Mueller EA, McNeil AJ. The history of palladium-catalyzed cross-couplings should inspire the future of catalyst-transfer polymerization. J Am Chem Soc. 2018;140:15126–39.

    Article  CAS  Google Scholar 

  11. Goto E. Unpublished results. There are data and related descriptions about the model reaction between 3 and an equimolar of 4,9-dibromo-2,7-bis(2-hexyl)benzo[lmn][3,8]-phenanthroline-1,3,6,8-tetraone (13) under the typical Migita-Kosugi-Stille coupling reaction condition catalyzed by Pd2(dba)3/P(o-tolyl)3 in toluene, affording only the disubstituted product without producing the monosubstituted one, remaining the unreacted 13 (October 9, 2013, E. Goto’s laboratory notebook 2, p. 54). Based on this result and inspired by the known Pd(0) catalyst transfer system for nonstoichiometric polycondensation (ref. 4), the nonstoichiometric The Migita-Kosugi-Stille coupling polycondensation of 2 and 4,9-dibromo-2,7-bis(2-decyltetradecyl) benzo[lmn][3,8]-phenanthroline-1,3,6,8-tetraone (14) ([14]0/[2]0 = 1.25) was conducted to afford a high-molecular-weight polymer (November 5, 2013, E. Goto’s laboratory notebook 2, p. 68).

  12. Goto E, Ando S, Ueda M, Higashihara T. Nonstoichiometric Stille coupling polycondensation for synthesizing naphthalene-diimide-based π-conjugated polymers. ACS Macro Lett. 2015;4:1004–7.

    Article  CAS  Google Scholar 

  13. Terayama K, Goto E, Higashihara T. Nonstoichiometric Stille coupling polycondensation via an intramolecular Pd(0) catalyst transfer using excess phthalimide monomer. Macromol Chem Phys. 2018;219:1800175.

    Article  Google Scholar 

  14. Nojima M, Kosaka K, Ohta Y, Yokozawa T. Precision synthesis of π-conjugated polymers by using intra-and intermolecular transfer of catalyst. Polym Prepr Jpn. 2015;64:1Pe025.

    Google Scholar 

  15. Nojima M, Kosaka K, Kato M, Ohta Y, Yokozawa T. Alternating intramolecular and intermolecular catalyst-transfer Suzuki-Miyaura condensation polymerization: Synthesis of boronate-terminated π-conjugated polymers using excess dibromo monomers. Macromol Rapid Commun. 2016;37:79–85.

    Article  CAS  Google Scholar 

  16. Nojima M, Ohta Y, Yokozawa T. Additive-controlled switching from abnormal to normal unstoichiometric Suzuki–Miyaura polycondensation for poly(biphenylenevinylene). Chem Lett. 2017;46:35–37.

    Article  CAS  Google Scholar 

  17. Sugita H, Nojima M, Ohta Y, Yokozawa T. Unusual cyclic polymerization through Suzuki–Miyaura coupling of polyphenylene bearing diboronate at both ends with excess dibromophenylene. Chem Commun. 2017;53:396–9.

    Article  CAS  Google Scholar 

  18. Kosaka K, Nanjyo K, Ohta Y, Yokozawa T. Importance of the balance of interaction between palladium catalyst and aromatic π-face for unstoichiometric Suzuki-Miyaura coupling polymerization: effective Pd cataCXium A catalyst for fluorene and cyclopentadithiophene monomers. Chem Lett. 2018;47:1040–3.

    Article  CAS  Google Scholar 

  19. Yokozawa T, Harada N, Sugita H, Ohta Y. Intramolecular catalyst transfer on a variety of functional groups between benzene rings in a Suzuki–Miyaura coupling reaction. Chem Eur J. 2019;25:10059–62.

    Article  CAS  Google Scholar 

  20. Sugita H, Ohta Y, Yokozawa T. Synthesis of cyclic aromatic polymer containing thiophene or pyridine by means of unstoichiometric Suzuki-Miyaura cyclic polycondensation: Effect of the position of bromine of heteroarylenes on cyclic polycondensation. J Polym Sci. 2020;58:1236–40.

    Article  CAS  Google Scholar 

  21. Nomura N, Tsurugi K, Okada M. Mechanistic rationale of a palladium-catalyzed allylic substitution polymerization—carbon−carbon bond-forming polycondensation out of stoichiometric control by cascade bidirectional allylation. Angew Chem Int Ed. 2001;40:1932–5.

    Article  CAS  Google Scholar 

  22. Hempe M, Reggelin M. Molecular packing and morphological stability of dihydro-indeno[1,2-b]fluorenes in the context of their substitution pattern. RSC Adv. 2017;7:47183–9.

    Article  CAS  Google Scholar 

  23. Brizius G, Pschirer NG, Steffen W, Stitzer K, Loye HC, Bunz UHF. Alkyne metathesis with simple catalyst systems: efficient synthesis of conjugated polymers containing vinyl groups in main or side chain. J Am Chem Soc. 2000;122:12435–40.

    Article  CAS  Google Scholar 

  24. Bedard TC, Moore JS. Design and synthesis of molecular turnstiles. J Am Chem Soc. 1995;117:10662–71.

    Article  CAS  Google Scholar 

  25. Kihara N, Komatsu S, Takata T, Endo T. Significance of stoichiometric imbalance in step polymerization via reactive intermediate. Macromolecules. 1999;32:4776–83.

    Article  CAS  Google Scholar 

  26. Matsumoto K, Ogawa T, Jikei M. Nonstoichiometric polycondensation based on Friedel-Crafts acylation in superacids for the syntheses of aromatic polyketones. Polym Chem. 2017;8:7297–7300.

    Article  CAS  Google Scholar 

  27. Bryan ZJ, Hall AO, Zhao CT, Chen J, McNeil AJ. Limitations of using small molecules to identify catalyst-transfer polycondensation reactions. ACS Macro Lett. 2016;5:69–72.

    Article  CAS  Google Scholar 

  28. Mikami K, Nojima M, Masumoto Y, Mizukoshi Y, Takita R, Yokozawa T, et al. Catalyst-dependent intrinsic ring-walking behavior on π-face of conjugated polymers. Polym Chem. 2017;8:1708–13.

    Article  CAS  Google Scholar 

  29. Bilbrey JA, Bootsma AN, Bartlett MA, Locklin J, Wheeler SE, Allen WD. Ring-walking of zerovalent nickel on aryl halides. J Chem Theory Comput. 2017;13:1706–11.

    Article  CAS  Google Scholar 

  30. Zhang TX, Li ZA. DFT study on Pd-catalyzed Suzuki cross-coupling polycondensation of aryl bromide monomers. Comput Theor Chem. 2013;1016:28–35.

    Article  CAS  Google Scholar 

  31. Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, et al. Efficient catalytic addition of aromatic carbon-hydrogen bonds to olefins. Nature. 1993;366:529–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is mainly supported by the Tokuyama Science Foundation. KT appreciates the support from the Innovative Flex Course for Frontier Organic Material Systems (iFront) at Yamagata University. We thank Prof. Cheng-Liang Liu from the Department of Materials Science and Engineering at National Taiwan University (NTU) for helping to match this collaborative work between Japan and Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

KT performed experiments on the synthesis of monomer and polymers as well as model reactions. C-WL performed experiments on DFT calculation. TH advised on the obtained results. All the authors prepared the manuscript.

Corresponding author

Correspondence to Tomoya Higashihara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terayama, K., Liu, CW. & Higashihara, T. Catalyst-transfer system in stoichiometry-independent AA+BB-type Migita–Kosugi–Stille coupling polycondensation using ester-functionalized dibromo monomer. Polym J 54, 143–150 (2022). https://doi.org/10.1038/s41428-021-00571-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00571-2

Search

Quick links