Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Biodegradable aliphatic poly(carbonate-co-ester)s containing biobased unsaturated double bonds: synthesis and structure-property relationships

Abstract

A series of aliphatic poly(carbonate-co-ester)s (PBCFs) were successfully synthesized via melt polycondensation of 1,4-butanediol (BD) and dimethyl carbonate (DMC) in the presence of biobased fumaric acid (FA). The prepared unsaturated copolymers had weight-average molecular weights (Mw) in the 4.98 × 104 to 8.82 × 104 g·mol−1 range and from 1.56 to 1.83 polydispersities. They all had random microstructures. The physical properties of the novel poly(carbonate-co-ester)s, such as melting temperature (Tm) and melting enthalpy (∆Hm), varied widely depending on their composition. The stiff fumaric acid units in the poly(butylene carbonate) (PBC) chain caused an increase in the glass transition temperature (Tg) and thermal stability. Furthermore, PBCF10 to PBCF20 (with fumaric acid unit content of <19%) contained PBC crystals, while the lattice structure of PBCF40 to PBCF80 (with fumaric acid unit content greater than 37%) was similar to that of the poly(butylene fumarate) (PBF) type. The mechanical properties and biodegradability of the copolymers were also studied.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu YH, Zhou FY, Zhou DM, Mo JT, Hu HW, Lin LM, et al. Degradation behaviors of biodegradable aliphatic polyesters and polycarbonates. J Biobased Mater Bio. 2020;14:155–68.

    Article  CAS  Google Scholar 

  2. Li Y, Han CY, Yu YC, Huang DX. Morphological, thermal, rheological and mechanical properties of poly (butylene carbonate) reinforced by stereocomplex polylactide. Int J Biol Macromol. 2019;137:1169–78.

    Article  CAS  Google Scholar 

  3. Paek KH, Im SG. Synthesis of a series of biodegradable poly(butylene carbonate-co-isophthalate) random copolymers derived from CO2-based comonomers for sustainable packaging. Green Chem. 2020;22:4570–80.

    Article  CAS  Google Scholar 

  4. Hu H, Zhang RY, Ying WB, Shi L, Yao CK, Kong ZY, et al. Sustainable and rapidly degradable poly(butylene carbonate-co-cyclohexanedicarboxylate): influence of composition on its crystallization, mechanical and barrier properties. Polym Chem. 2019;10:1812–22.

    Article  CAS  Google Scholar 

  5. Gong ZJ, Li YR, Wu HL, Lin SD, Yu WY. Direct copolymerization of carbon dioxide and 1,4-butanediol enhanced by ceria nanorod catalyst. Appl Catal B-Environ. 2020;265:118524–35.

    Article  CAS  Google Scholar 

  6. Lee JJ, Jeon JY, Park JH, Jang Y, Hwang EY, Lee BY. Preparation of high-molecular-weight poly(1,4-butylene carbonate-co-terephthalate) and its thermal properties. RSC Adv. 2013;3:25823–29.

    Article  CAS  Google Scholar 

  7. Iwata T, Gan HY, Togo A, Fukata Y. Recent developments in microbial polyester fiber and polysaccharide ester derivative research. Polym J. 2021;53:221–38.

    Article  CAS  Google Scholar 

  8. Carvalho JRG, Conde G, Antonioli ML, Dias PP, Vasconcelos RO, Taboga SR, et al. Biocompatibility and biodegradation of poly(lactic acid) (PLA) and an immiscible PLA/poly(epsilon-caprolactone) (PCL) blend compatibilized by poly(epsilon-caprolactone-b-tetrahydrofuran) implanted in horses. Polym J. 2020;52:629–43.

    Article  CAS  Google Scholar 

  9. Mazzocchetti L, Scandola M, Jiang Z. Random copolymerization with a large lactone enhances aliphatic polycarbonate crystallinity. Eur Polym J. 2012;48:1883–91.

    Article  CAS  Google Scholar 

  10. Zhang J, Zhu WX, Li CC, Zhang D, Xiao YN, Guan GH, et al. Effect of the biobased linear long-chain monomer on crystallization and biodegradation behaviors of poly(butylene carbonate)-based copolycarbonates. RSC Adv. 2015;5:2213–22.

    Article  CAS  Google Scholar 

  11. Zhang J, Zhu W, Li C, Zhang D, Xiao Y, Guan G, et al. Aliphatic-aromatic poly(butylene carbonate-co-terephthalate) random copolymers: synthesis, cocrystallization, and composition-dependent properties. J Appl Polym Sci. 2015;132:41952–61.

    Google Scholar 

  12. Cai XD, Yang XG, Zhang H, Wang GY. Modification of biodegradable poly(butylene carbonate) with 1,4-cyclohexanedimethylene to enhance the thermal and mechanical properties. Polym Degrad Stabil. 2017;143:35–41.

    Article  CAS  Google Scholar 

  13. Cai XD, Yang XG, Zhang H, Wang GY. Aliphatic-aromatic poly(carbonate-co-ester)s containing biobased furan monomer: Synthesis and thermo-mechanical properties. Polymer. 2018;134:63–70.

    Article  CAS  Google Scholar 

  14. Kaykha Y, Rafizadeh M. Effect of graphene oxide on features of functionalizable poly(butylene fumarate) and functional poly(butylene succinate) doped polyaniline. Polymer. 2019;166:138–47.

    Article  CAS  Google Scholar 

  15. Ye HM, Liu P, Wang CX, Meng X, Zhou Q. Polymorphism regulation in poly(hexamethylene succinate-co-hexamethylene fumarate): altering the hydrogen bonds in crystalline lattice. Polymer. 2017;108:272–80.

    Article  CAS  Google Scholar 

  16. Zheng Y, Tian GK, Xue JX, Zhou JJ, Huo H, Li L. Effects of isomorphic poly(butylene succinate-co-butylene fumarate) on the nucleation of poly(butylene succinate) and the formation of poly(butylene succinate) ring-banded spherulites. Crystengcomm. 2018;20:1573–87.

    Article  CAS  Google Scholar 

  17. Yu Y, Wei ZY, Leng XF, Li Y. Facile preparation of stereochemistry-controllable biobased poly(butylene maleate-co-butylene fumarate) unsaturated copolyesters: a chemoselective polymer platform for versatile functionalization via aza-michael addition. Polym Chem. 2018;9:5426–41.

    Article  CAS  Google Scholar 

  18. Sheikholeslami SN, Rafizadeh M, Taromi FA, Shirali H. Crystallization and photo-curing kinetics of biodegradable poly(butylene succinate-co-butylene fumarate) short-segmented block copolyester. Polym Int. 2017;66:289–99.

    Article  Google Scholar 

  19. Tang YR, Gao Y, Xu J, Guo BH. How to regulate the isothermal growth rate of polymer spherulite without changing its molecular composition? Crystengcomm. 2015;17:6467–70.

    Article  CAS  Google Scholar 

  20. Ye HM, Wang RD, Liu J, Xu J, Guo BH. Isomorphism in poly(butylene succinate-co-butylene fumarate) and Its application as polymeric nucleating agent for poly(butylene succinate). Macromolecules. 2012;45:5667–75.

    Article  CAS  Google Scholar 

  21. Baroni A, Neaga I, Delbosc N, Wells M, Verdy L, Ansseau E, et al. Bioactive aliphatic polycarbonates carrying guanidinium functions: an innovative approach for myotonic dystrophy type 1 therapy. ACS Omega. 2019;4:18126–35.

    Article  CAS  Google Scholar 

  22. Wu S, Zheng L, Li C, Xiao Y, Huo S, Zhang B. Grafted copolymer micelles with pH triggered charge reversibility for efficient doxorubicin delivery. J Polym Sci Part Pol Chem. 2017;55:2036–46.

    Article  CAS  Google Scholar 

  23. Kuang X, Liu GM, Zheng LC, Li CC, Wang DJ. Functional polyester with widely tunable mechanical properties: the role of reversible cross-linking and crystallization. Polymer. 2015;65:202–9.

    Article  CAS  Google Scholar 

  24. Matsuoka S, Kamijo Y, Suzuki M. Post-polymerization modification of unsaturated polyesters by Michael addition of N-heterocyclic carbenes. Polym J. 2017;49:423–28.

    Article  CAS  Google Scholar 

  25. Feng L, Zhu W, Li C, Guan G, Zhang D, Xiao Y, et al. A high-molecular-weight and high-Tg poly(ester carbonate) partially based on isosorbide: synthesis and structure-property relationships. Polym Chem. 2015;6:633–42.

    Article  CAS  Google Scholar 

  26. Nikolic MS, Poleti D, Djonlagic J. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene fumarate)s. Eur Polym J. 2003;39:2183–92.

    Article  CAS  Google Scholar 

  27. Morales-Huerta JC, de Ilarduya AM, Munoz-Guerra S. Sustainable aromatic copolyesters via ring opening polymerization: poly(butylene 2,5-furandicarboxylate-co-terephthalate)s. ACS Sustain Chem Eng. 2016;4:4965–73.

    Article  CAS  Google Scholar 

  28. Japu C, Martinez de Ilarduya A, Alla A, Garcia-Martin MG, Galbis JA, Munoz-Guerra S. Bio-based PBT copolyesters derived from d-glucose: influence of composition on properties. Polym Chem. 2014;5:3190–202.

    Article  CAS  Google Scholar 

  29. Wang G, Jiang M, Zhang Q, Wang R, Tong X, Xue S, et al. Biobased copolyesters: synthesis, sequence distribution, crystal structure, thermal and mechanical properties of poly(butylene sebacate-co-butylene furandicarboxylate). Polym Degrad Stabil. 2017;143:1–8.

    Article  Google Scholar 

  30. Yang Y, Qiu Z. Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-ethylene succinate) copolyesters: effects of comonomer composition and crystallization temperature. Crystengcomm. 2011;13:2408–17.

    Article  CAS  Google Scholar 

  31. Zheng L, Wang Z, Li C, Xiao Y, Zhang D, Guan G, et al. Synthesis, characterization and properties of novel linear poly(butylene fumarate) bearing reactive double bonds. Polymer. 2013;54:631–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51863004; 22165004), the Science and Technology Project of Guizhou Province (ZK[2021]248, ZK[2021]055), the Natural Science Foundation of Guizhou Minzu University (GZMU[2019]YB32; GZMU[2019]YB24) and the National College Student Innovation and Entrepreneurship Training Program (202010672041, S202010672045).

Author information

Authors and Affiliations

Authors

Contributions

DJ: Investigation, methodology, collecting data, writing––original draft. XC: Supervision, resources, writing––review & editing, project administration. QS: Investigation, collecting data. RZ: Investigation, collecting data. XP: Investigation, collecting data. DB: Collecting data.

Corresponding author

Correspondence to Xiaodong Cai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, D., Cai, X., Song, Q. et al. Biodegradable aliphatic poly(carbonate-co-ester)s containing biobased unsaturated double bonds: synthesis and structure-property relationships. Polym J 54, 47–55 (2022). https://doi.org/10.1038/s41428-021-00567-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00567-y

This article is cited by

Search

Quick links