Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Rapid Communication
  • Published:

Thermal crosslinking of polylactide/star-shaped polycaprolactone for toughening and resistance to thermal deformation

Abstract

The applications of polylactic acid (PLA) are limited by its brittleness and poor thermal resistance. Here, the toughness of PLA and its resistance to thermal deformation were enhanced by crosslinking it with star-shaped polycaprolactone using dicumyl peroxide as a thermal initiator. The mechanical properties of the blended and crosslinked films were investigated via tensile testing. The crosslinked films of PLA/st4PCL-G exhibited toughness 1.2 times greater than that of neat PLA. The resistance to thermal deformation was investigated in a hot oven and in hot water. Although the glass-transition temperature (Tg) of the crosslinked films was lower than that of neat PLA, the crosslinked films exhibited resistance to thermal deformation and maintained shape stability without any shrinkage or distortion at temperatures greater than Tg.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

References

  1. Lim L-T, Auras R, Rubino M. Processing technologies for poly (lactic acid). Prog Polym Sci. 2008;33:820–2.

    Article  CAS  Google Scholar 

  2. Rasal RM, Janorkar AV, Hirt DE. Poly (lactic acid) modifications. Prog Polym Sci. 2010;35:338–56.

    Article  CAS  Google Scholar 

  3. Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4:835–64.

    Article  CAS  Google Scholar 

  4. Odent J, Leclère P, Raquez J-M, Dubois P. Toughening of polylactide by tailoring phase-morphology with P [CL-co-LA] random copolyesters as biodegradable impact modifiers. Eur Polym J. 2013;49:914–22.

    Article  CAS  Google Scholar 

  5. Choochottiros C. Effect of polycaprolactone-co-polylactide copolyesters’ arms in enhancing optical transparent PLA toughness. Macromol Res. 2016;24:838–46.

    Article  CAS  Google Scholar 

  6. Ma P, Hristova-Bogaerds D, Goossens J, Spoelstra A, Zhang Y, Lemstra P. Toughening of poly (lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J. 2012;48:146–54.

    Article  CAS  Google Scholar 

  7. Nagarajan V, Mohanty AK, Misra M. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng. 2016;4:2899–916.

    Article  CAS  Google Scholar 

  8. Ma Q, Georgiev G, Cebe P. Constraints in semicrystalline polymers: using quasi-isothermal analysis to investigate the mechanisms of formation and loss of the rigid amorphous fraction. Polymer. 2011;52:4562–70.

    Article  CAS  Google Scholar 

  9. Liao R, Yang B, Yu W, Zhou C. Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci. 2007;104:310–17.

    Article  CAS  Google Scholar 

  10. Yu F, Liu T, Zhao X, Yu X, Lu A, Wang J. Effects of talc on the mechanical and thermal properties of polylactide. J Appl Polym Sci. 2012;125:E99–E109.

    Article  CAS  Google Scholar 

  11. Tsuji H, Takai H, Fukuda N, Takikawa H. Non‐isothermal crystallization behavior of poly (L‐lactic acid) in the presence of various additives. Macromol Mater Eng. 2006;291:325–35.

    Article  CAS  Google Scholar 

  12. Park SD, Todo M, Arakawa K, Koganemaru M. Effect of crystallinity and loading-rate on mode I fracture behavior of poly (lactic acid). Polymer. 2006;47:1357–63.

    Article  CAS  Google Scholar 

  13. Harris AM, Lee EC. Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci. 2008;107:2246–55.

    Article  CAS  Google Scholar 

  14. Yang R, Cao H, Zhang P, Chen L, Zou G, Zhang X, et al. Highly toughened and heat-resistant poly(lactic acid) with balanced strength using an unsaturated liquid crystalline polyester via dynamic vulcanization. ACS Appl Polym Mater. 2021;3:299–309.

    Article  CAS  Google Scholar 

  15. Yoshimura Y, Nojiri M, Arimoto M, Ishimoto K, Aso Y, Ohara H, et al. Green polymer chemistry: one-pot, metal-free synthesis of macromonomer via direct polycondensation of lactic acid and its radical polymerization to graft and comb polymers. Polymer. 2016;90:342–50.

    Article  CAS  Google Scholar 

  16. Bartczak Z, Galeski A, Kowalczuk M, Sobota M, Malinowski R. Tough blends of poly (lactide) and amorphous poly ([R, S]-3-hydroxy butyrate)–morphology and properties. Eur Polym J. 2013;49:3630–41.

    Article  CAS  Google Scholar 

  17. Dong C-M, Qiu K-Y, Gu Z-W, Feng X-D. Synthesis of star-shaped poly (ε-caprolactone)-b-poly (dl-lactic acid-alt-glycolic acid) with multifunctional initiator and stannous octoate catalyst. Macromolecules. 2001;34:4691–96.

    Article  CAS  Google Scholar 

  18. Shibita A, Takase H, Shibata M. Semi-interpenetrating polymer networks composed of poly (l-lactide) and diisocyanate-bridged 4-arm star-shaped ɛ-caprolactone oligomers. Polymer. 2014;55:5407–16.

    Article  CAS  Google Scholar 

  19. Simões CL, Viana JC, Cunha AM. Mechanical properties of poly(ε-caprolactone) and poly(lactic acid) blends. J Appl Polym Sci. 2009;112:345–52.

    Article  Google Scholar 

  20. Semba T, Kitagawa K, Ishiaku US, Hamada H. The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends. J Appl Polym Sci. 2006;101:1816–25.

    Article  CAS  Google Scholar 

  21. Yang SL, Wu ZH, Yang W, Yang MB. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym Test. 2008;27:957–63.

    Article  CAS  Google Scholar 

  22. Wu F, Misra M, Mohanty AK. Studies on why the heat deflection temperature of polylactide bioplastic cannot be improved by overcrosslinking. Polym Cryst. 2019;2:e10088.

  23. Zhang R, Cai C, Liu Q, Hu S. Enhancing the melt strength of poly (lactic acid) via micro-crosslinking and blending with poly (butylene adipate-co-butylene terephthalate) for the preparation of foams. J Polym Environ 2017;25:1335–41.

    Article  CAS  Google Scholar 

  24. Song P, Chen G, Wei Z, Chang Y, Zhang W, Liang J. Rapid crystallization of poly (L-lactic acid) induced by a nanoscaled zinc citrate complex as nucleating agent. Polymer. 2012;53:4300–9.

    Article  CAS  Google Scholar 

  25. Suksut B, Deeprasertkul C. Effect of nucleating agents on physical properties of poly (lactic acid) and its blend with natural rubber. J Polym Environ. 2011;19:288–96.

    Article  CAS  Google Scholar 

  26. Song P, Wei Z, Liang J, Chen G, Zhang W. Crystallization behavior and nucleation analysis of poly (l‐lactic acid) with a multiamide nucleating agent. Polym Eng Sci. 2012;52:1058–68.

    Article  CAS  Google Scholar 

  27. Sarasua J-R, Prud’homme RE, Wisniewski M, Le Borgne A, Spassky N. Crystallization and melting behavior of polylactides. Macromolecules. 1998;31:3895–905.

    Article  CAS  Google Scholar 

  28. Pasanphan W, Haema K, Kongkaoroptham P, Phongtamrug S, Piroonpan T. Glycidyl methacrylate functionalized star-shaped polylactide for electron beam modification of polylactic acid: synthesis, irradiation effects and microwave-resistant studies. Polym Degrad Stab. 2021;189:109619.

    Article  CAS  Google Scholar 

  29. Wang L, Wang Y-N, Huang Z-G, Weng Y-X. Heat resistance, crystallization behavior, and mechanical properties of polylactide/nucleating agent composites. Mater Des (1980-2015). 2015;66:7–15.

    Article  CAS  Google Scholar 

  30. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E. Physical and mechanical properties of poly (l‐lactic acid) nucleated by dibenzoylhydrazide compound. J Appl Polym Sci. 2007;103:244–50.

    Article  CAS  Google Scholar 

  31. Lin L, Deng C, Lin G-P, Wang Y-Z. Super toughened and high heat-resistant poly(lactic acid) (PLA)-based blends by enhancing interfacial bonding and PLA phase crystallization. Ind Eng Chem Res. 2015;54:5643–55.

    Article  CAS  Google Scholar 

  32. Zuza E, Ugartemendia JM, Lopez A, Meaurio E, Lejardi A, Sarasua J-R. Glass transition behavior and dynamic fragility in polylactides containing mobile and rigid amorphous fractions. Polymer. 2008;49:4427–32.

    Article  CAS  Google Scholar 

  33. Arnoult M, Dargent E, Mano JF. Mobile amorphous phase fragility in semi-crystalline polymers: comparison of PET and PLLA. Polymer. 2007;48:1012–9.

    Article  CAS  Google Scholar 

  34. Fischer E, Sterzel HJ, Wegner G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Z und Z für Polym. 1973;251:980–90.

    Article  CAS  Google Scholar 

  35. Fitz BD, Jamiolkowski DD, Andjelić S. Tg depression in poly(l(–)-lactide) crystallized under partially constrained conditions. Macromolecules. 2002;35:5869–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PTT Public Company Limited, Thailand, supported this research.

Author information

Authors and Affiliations

Authors

Contributions

Chantiga Choochottiros: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Resources; Supervision; Validation; Visualization;Roles/Writing - original draft; Writing - review & editing.

Corresponding author

Correspondence to Chantiga Choochottiros.

Ethics declarations

Conflict of interest

The author declares that no known competing financial interests or personal relationships could have influenced the work reported in this paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choochottiros, C. Thermal crosslinking of polylactide/star-shaped polycaprolactone for toughening and resistance to thermal deformation. Polym J 54, 83–90 (2022). https://doi.org/10.1038/s41428-021-00565-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00565-0

This article is cited by

Search

Quick links