Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

POSS cage-scrambling-induced gelation of POSS-pendant random copolymers catalyzed by fluoride anions

Abstract

Polyhedral oligomeric silsesquioxane (POSS) is a versatile building block for various organic/inorganic hybrid materials. However, its intrinsic reactivity has attracted limited attention, particularly in polymer chemistry. This study investigated the cage-scrambling properties of POSS-pendant random copolymers catalyzed by fluoride anions, leading to gelation of a solution of random copolymers. A series of POSS-pendant random copolymers was prepared using POSS-containing methacrylates and several vinyl monomers. The gelation properties were first investigated in detail using P(PhPOSSMA-r-BMA) by varying the POSS content and reaction conditions. The insoluble product was characterized by FT-IR and solid-state 29Si-NMR, the results of which support the intermolecular cage-scrambling reaction of the pendant POSS moieties via transient siloxane cleavage. Chloride and bromide anions also acted as catalysts for the scrambling reaction. Altering the comonomer or the vertex substituents resulted in varying gelation times depending on each structural characteristic. The unique polymer reaction presented herein opens up a wider range of uses for POSS—not only as an inorganic component but also as an intrinsically reactive moiety in various organic/inorganic hybrid polymer materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chou YC, Wang YY, Hsieh TE. Transparent photo-curable co-polyacrylate/silica nanocomposites prepared by sol-gel process. J Appl Polym Sci. 2007;105:2073–82.

    Article  CAS  Google Scholar 

  2. Kosuge T, Imato K, Goseki R, Otsuka H. Polymer–inorganic composites with dynamic covalent mechanochromophore. Macromolecules. 2016;49:5903–11.

    Article  CAS  Google Scholar 

  3. Lee LH, Chen WC. High-refractive-index thin films prepared from trialkoxysilane-capped poly(methyl methacrylate)−titania materials. Chem Mater. 2001;13:1137–42.

    Article  CAS  Google Scholar 

  4. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromolecules. 2003;36:5732–41.

    Article  CAS  Google Scholar 

  5. Li HJ, Jiang H, Haraguchi K. Ultrastiff, thermoresponsive nanocomposite hydrogels composed of ternary polymer−clay−silica networks. Macromolecules. 2018;51:529–539.

    Article  CAS  Google Scholar 

  6. Baney RH, Itoh M, Sakakibara A, Suzuki T. Silsesquioxanes. Chem Rev. 1995;95:1409–30.

    Article  CAS  Google Scholar 

  7. Zhou H, Ye Q, Xu J. Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mater Chem Front. 2017;1:212–30.

    Article  CAS  Google Scholar 

  8. Chen F, Lin F, Zhang Q, Cai R, Wu Y, Ma X. Polyhedral oligomeric silsesquioxane hybrid polymers: well-defined architectural design and potential functional applications. Macromol Rapid Commun. 2019;40:1900101.

    Article  CAS  Google Scholar 

  9. Zhao Y, Schiraldi DA. Thermal and mechanical properties of polyhedral oligomeric silsesquioxane (POSS)/polycarbonate composites. Polymer. 2005;46:11640–7.

    Article  CAS  Google Scholar 

  10. Kopesky ET, McKinley GH, Polymer RC. Toughened poly(methyl methacrylate) nanocomposites by incorporating polyhedral oligomeric silsesquioxanes. Polymer. 2006;47:299–309.

    Article  CAS  Google Scholar 

  11. Tanaka K, Adachi S, Chujo Y. Structure–property relationship of octa-substituted POSS in thermal and mechanical reinforcements of conventional polymers. J Polym Sci A Polym Chem. 2009;47:5690–7.

    Article  CAS  Google Scholar 

  12. Yanagie M, Kaneko Y. Preparation of irrefrangible polyacrylamide hybrid hydrogels using water-dispersible cyclotetrasiloxane or polyhedral oligomeric silsesquioxane containing polymerizable groups as cross-linkers. Polym Chem. 2018;9:2302–12.

    Article  CAS  Google Scholar 

  13. Lichtenhan JD, Otonari YA, Carr MJ. Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules. 1995;28:8435–7.

    Article  CAS  Google Scholar 

  14. Zhang W, Fu BX, Seo Y, Schrag E, Hsiao B, Mather PT, et al. Effect of methyl methacrylate/polyhedral oligomeric silsesquioxane random copolymers in compatibilization of polystyrene and poly(methyl methacrylate) blends. Macromolecules. 2002;35:8029–38.

    Article  CAS  Google Scholar 

  15. Hayakawa T, Seino M, Goseki R, Hirai T, Kikuchi R, Kakimoto M, et al. Fabrication of hierarchically ordered hybrid structures over multiple length scales via direct etching of self-organized polyhedral oligomeric silsesquioxane (POSS) functionalized block copolymer films. Polym J. 2006;38:567–76.

    Article  CAS  Google Scholar 

  16. Hirai T, Leolukman M, Hayakawa T, Kakimoto M, Gopalan P. Hierarchical nanostructures of organosilicate nanosheets within self-organized block copolymer films. Macromolecules. 2008;41:4558–60.

    Article  CAS  Google Scholar 

  17. Deng Y, Bernard J, Alcouffe P, Galy J, Dai L, Gérard JF. Nanostructured hybrid polymer networks from in situ self-assembly of RAFT-synthesized POSS-based block copolymers. J Polym Sci A Polym Chem. 2011;49:4343–52.

    Article  CAS  Google Scholar 

  18. Pramudya I, Rico CG, Lee C, Chung H. POSS-containing bioinspired adhesives with enhanced mechanical and optical properties for biomedical applications. Biomacromolecules. 2016;17:3853–61.

    Article  CAS  PubMed  Google Scholar 

  19. Shockey EG, Bolf AG, Jones PF, Schwab JJ, Chaffee KP, Haddad TS, et al. Functionalized polyhedral oligosilsesquioxane (POSS) macromers: new graftable POSS hydride, POSS α-olefin, POSS epoxy, and POSS chlorosilane macromers and POSS-siloxane triblocks. Appl Organometal Chem. 1999;13:311–27.

    Article  CAS  Google Scholar 

  20. Zhang W, Fang B, Walther A, Müller AHE. Synthesis via RAFT polymerization of tadpole-shaped organic/inorganic hybrid poly (acrylic acid) containing polyhedral oligomeric silsesquioxane (POSS) and their self-assembly in water. Macromolecules. 2009;42:2563–9.

    Article  CAS  Google Scholar 

  21. Shao Y, Ding M, Xu Y, Zhao F, Dai H, Miao X-R, et al. Synthesis and self-assembly of shape amphiphiles based on POSS-dendron conjugates. Molecules. 2017;22:622.

    Article  PubMed Central  CAS  Google Scholar 

  22. Naka K, Masuoka S, Shinke R, Yamada M. Synthesis of first- and second-generation imidazole-terminated POSS-core dendrimers and their pH responsive and coordination properties. Polym J. 2012;44:353–9.

    Article  CAS  Google Scholar 

  23. Wang J, Sun J, Zhou J, Jin K, Fang Q. Fluorinated and thermo-cross-linked polyhedral oligomeric silsesquioxanes: new organic-inorganic hybrid materials for high-performance dielectric application. ACS Appl Mater Interfaces. 2017;9:12782–90.

    Article  CAS  PubMed  Google Scholar 

  24. Yoshimatsu M, Komori K, Ohnagamitsu Y, Sueyoshi N, Kawashima N, Chinen S, et al. Necklace-shaped dimethylsiloxane polymers bearing a polyhedral oligomeric silsesquioxane cage prepared by polycondensation and ring-opening polymerization. Chem Lett. 2012;41:622–4.

    Article  CAS  Google Scholar 

  25. Maegawa T, Irie Y, Fueno H, Tanaka K, Naka K. Synthesis and polymerization of a para-disubstituted T8-caged hexaisobutyl-POSS monomer. Chem Lett. 2014;43:1532–4.

    Article  CAS  Google Scholar 

  26. Katsuta N, Yoshimatsu M, Komori K, Natsuaki T, Suwa K, Sakai K, et al. Necklace-shaped dimethylsiloxane polymers bearing polyhedral oligomeric silsesquioxane cages with alternating length chains. Polymer. 2017;127:8–14.

    Article  CAS  Google Scholar 

  27. Tsuchiya K, Ishida Y, Kameyama A. Synthesis of diblock copolymers consisting of POSS-containing random methacrylate copolymers and polystyrene and their cross-linked microphase-separated structure via fluoride ion-mediated cage scrambling. Polym Chem. 2017;8:2516–27.

    Article  CAS  Google Scholar 

  28. Taherzadeh H, Ishida Y, Kameyama A. Phase-separated structures of random methacrylate copolymers with pendant POSS moieties. J Appl Polym Sci. 2018;136:47246–7.

    Article  CAS  Google Scholar 

  29. Rikowski E, Marsmann HC. Cage-rearrangement of silsesquioxanes. Polyhedron. 1997;16:3357–61.

    Article  CAS  Google Scholar 

  30. Anderson SE, Bodzin DJ, Haddad TS, Boatz JA, Mabry JM, Mitchell C, et al. Structural investigation of encapsulated fluoride in polyhedral oligomeric silsesquioxane cages using ion mobility mass spectrometry and molecular mechanics. Chem Mater. 2008;20:4299–309.

    Article  CAS  Google Scholar 

  31. Asuncion MZ, Laine RM. Fluoride rearrangement reactions of polyphenyl- and polyvinylsilsesquioxanes as a facile route to mixed functional phenyl, vinyl T10 and T12 silsesquioxanes. J Am Chem Soc. 2010;132:3723–36.

    Article  CAS  PubMed  Google Scholar 

  32. Ronchi M, Sulaiman S, Boston NR, Laine RM. Fluoride catalyzed rearrangements of polysilsesquioxanes, mixed Me, vinyl T8, Me, vinyl T10 and T12 cages. Appl Organomet Chem. 2010;24:551–7.

    Article  CAS  Google Scholar 

  33. Furgal JC, Jung JH, Clark S, Goodson T III, Laine RM. Beads on a chain (BoC) phenylsilsesquioxane (SQ) polymers via F catalyzed rearrangements and ADMET or reverse Heck cross-coupling reactions: through chain, extended conjugation in 3-D with potential for dendronization. Macromolecules. 2013;46:7591–604.

    Article  CAS  Google Scholar 

  34. Jaroentomeechai T, Yingsukkamol P-K, Phurat C, Somsook E, Osotchan T, Ervithayasuporn V. Synthesis and reactivity of nitrogen nucleophiles-induced cage-rearrangement silsesquioxanes. Inorg Chem. 2012;51:12266–72.

    Article  CAS  PubMed  Google Scholar 

  35. Chimjarn S, Kunthom R, Chancharone P, Sodkhomkhum R, Sangtrirutnugul P, Ervithayasuporn V. Synthesis of aromatic functionalized cage-rearranged silsesquioxanes (T8, T10, and T12) via nucleophilic substitution reactions. Dalton Trans. 2015;44:916–9.

    Article  CAS  PubMed  Google Scholar 

  36. Furgal JC, Goodson T, Laine RM. D5h [PhSiO1.5]10 synthesis via F catalyzed rearrangement of [PhSiO1.5]n. An experimental/computational analysis of likely reaction pathways. Dalton Trans. 2016;45:1025–39.

    Article  CAS  PubMed  Google Scholar 

  37. Hanprasit S, Tungkijanansin N, Prompawilai A, Eangpayung S, Ervithayasuporn V. Synthesis and isolation of non-chromophore cage-rearranged silsesquioxanes from base-catalyzed reactions. Dalton Trans. 2016:45;16117–20.

  38. Tsuchiya K, Arai H, Ishida Y, Kameyama A. Dynamic network formation of POSS-pendanted polymer via cage scrambling mediated by fluoride ion. Macromolecules. 2015;48:1636–43.

    Article  CAS  Google Scholar 

  39. Imai K, Kaneko Y. Preparation of ammonium-functionalized polyhedral oligomeric silsesquioxanes with high proportions of cagelike decamer and their facile separation. Inorg Chem. 2017;56:4133–40.

    Article  CAS  PubMed  Google Scholar 

  40. Hirai T, Leolukman M, Jin S, Goseki R, Ishida Y, Kakimoto M, et al. Hierarchical self-assembled structures from POSS-containing block copolymers synthesized by living anionic polymerization. Macromolecules. 2009;42:8835–43.

    Article  CAS  Google Scholar 

  41. Zou J, Yu Q, Shang Z. Correlation between empirical solvent polarity scales and computed quantities derived from molecular surface electrostatic potentials. J Chem Soc, Perkin Trans 2. 2001;1439–43.

  42. Catalán J. Solvent effects on the NMR shieldings of nitrogen atoms in azole and azine systems: their counterparts in the gas phase. J Chem Soc, Perkin Trans 2. 2001;1117–23.

  43. Zheng P, McCarthy TJ. A surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J Am Chem Soc. 2012;134:2024–7.

  44. Schmolke W, Perner N, Seiffert S. Dynamically cross-linked polydimethylsiloxane networks with ambient-temperature self-healing. Macromolecules. 2015;48:8781–8.

    Article  CAS  Google Scholar 

  45. Pauling L. The nature of the chemical bond. 3rd ed. New York: Cornell University Press; 1960.

  46. Montis R, Bencini A, Coles SJ, Conti L, Fusaro L, Gale PA, et al. Fluoride binding by an anionic receptor: tuning the acidity of amide NH groups for basic anion hydrogen bonding and recognition. Chem Commun. 2019;55:2745–8.

    Article  CAS  Google Scholar 

  47. Amamoto Y, Otsuka H, Takahara A, Matyjaszewski K. Changes in network structure of chemical gels controlled by solvent quality through photoinduced radical reshuffling reactions of trithiocarbonate units. ACS Macro Lett. 2012;1:478–81.

    Article  CAS  PubMed  Google Scholar 

  48. Takahashi A, Goseki R, Ito K, Otsuka H. Thermally healable and reprocessable bis(hindered amino)disulfide-cross-linked polymethacrylate networks. ACS Macro Lett. 2017;6:1280–4.

    Article  CAS  PubMed  Google Scholar 

  49. Zheng L, Hong S, Cardoen G, Burgaz E, Gido SP, Coughlin EB. Polymer nanocomposites through controlled self-assembly of cubic silsesquioxane scaffolds. Macromolecules. 2004;37:8606–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Ministry of Education, Culture, Sports, Science, and Technology-Supported Program for the Strategic Research Foundation at Private Universities (No. S1311032), 2013–2017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akira Takahashi or Atsushi Kameyama.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, A., Okada, T., Nakano, K. et al. POSS cage-scrambling-induced gelation of POSS-pendant random copolymers catalyzed by fluoride anions. Polym J 53, 1213–1222 (2021). https://doi.org/10.1038/s41428-021-00523-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00523-w

This article is cited by

Search

Quick links