Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced in-plane thermal conductivity of ultrahigh molecular weight polyethylene films via a new design of a two-step biaxial stretching mode

Abstract

The thermal conductivity of bulk polymeric films can be generally improved by introducing interlaced lamellar or “shish-kebab” crystals along the machine direction (MD) through uniaxial stretching or high-pressure extrusion. However, the thermal pathway along the transverse direction (TD) is disrupted to limit the enhancement of in-plane thermal conductivity as the draw ratio increases. In this paper, a mesh-like crystal structure of ultrahigh molecular weight polyethylene (UHMWPE) films is achieved through a two-step biaxial stretching mode to construct a planar-oriented crystal network. The in-plane thermal conductivity increases to 7.3 W m/K at a total draw ratio of 25. This mesh-like crystal network structure was investigated through scanning electron microscopy (SEM) and 1-dimensional wide-angle X-ray diffraction (1D-WXRD). The evolution mechanism of the crystal network structure is proposed on the basis of single-temperature biaxial stretching modes with different draw ratios. The construction of additional order along the TD to form a planar-oriented crystal network structure by biaxial stretching can provide new insight into improving the in-plane thermal conductivity of bulk polymeric films.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Du JG, Wang Z, Yu JL, Ullah S, Yang B, Li CH, et al. Ultrahigh-strength ultrahigh molecular weight polyethylene (UHMWPE)-based fiber electrode for high performance flexible supercapacitors. Adv Funct Mater. 2018;28:1707351.

    Article  Google Scholar 

  2. Lee J, Sul H, Lee W, Pyun KR, Ha I, Kim D, et al. Stretchable skin‐like cooling/heating device for reconstruction of artificial thermal sensation in virtual reality. Adv Funct Mater. 2020:1909171.

  3. Koda T, Toyoshima T, Komatsu T, Takezawa Y, Nishioka A, Miyata K. Ordering simulation of high thermal conductivity epoxy resins. Polym J. 2012;45:444–8.

    Article  Google Scholar 

  4. Zhang X, Zhang J, Xia L, Li C, Wang J, Xu F, et al. Simple and consecutive melt extrusion method to fabricate thermally conductive composites with highly oriented boron nitrides. ACS Appl Mater Interfaces. 2017;9:22977–84.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang XL, Wu H, Guo SY, Wang YZ. Understanding in crystallization of polyethylene: the role of boron nitride (BN) particles. Rsc Adv. 2015;5:99812–9.

    Article  CAS  Google Scholar 

  6. Choi SW, Yoon KH, Jeong S-S. Morphology and thermal conductivity of polyacrylate composites containing aluminum/multi-walled carbon nanotubes. Compos Part A. 2013;45:1–5.

    Article  CAS  Google Scholar 

  7. He X, Wang Y. Highly thermally conductive polyimide composite films with excellent thermal and electrical insulating properties. Ind Eng Chem Res. 2020;59:1925–33.

    Article  CAS  Google Scholar 

  8. Kuwagaki H, Meguro T, Tatami J, Komeya K. An improvement of thermal conduction of activated carbon by adding graphite. J. Mater Sci. 2003,38:3279–84.

    Article  CAS  Google Scholar 

  9. Sawada T, Tsuruoka T, Ueda N, Marubayashi H, Nojima S, Morikawa J, et al. Thermally conductive molecular assembly composed of an oligo(ethylene glycol)-modified filamentous virus with improved solubility and resistance to organic solvents. Polym J. 2020;52:803–11.

    Article  CAS  Google Scholar 

  10. Wang X, Ho V, Segalman RA, Cahill DG. Thermal conductivity of high-modulus polymer fibers. Macromolecules. 2013;46:4937–43.

    Article  CAS  Google Scholar 

  11. Singh V, Bougher TL, Weathers A, Cai Y, Bi K, Pettes MT, et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat Nanotechnol. 2014;9:384–90.

    Article  CAS  PubMed  Google Scholar 

  12. Kim GH, Lee D, Shanker A, Shao L, Kwon MS, Gidley D, et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat Mater. 2015;14:295–300.

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Zhang C, Chen T, Li L, Li J. Preparation of a THermally Insulating Nanocomposite by Blending Ultra-high-molecular-weight Polyethylene with Gas-phase Silica. Ind Eng Chem Res. 2015;54:6093–9.

    Article  CAS  Google Scholar 

  14. Shen S, Henry A, Tong J, Zheng R, Chen G. Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol. 2010;5:251–5.

    Article  CAS  PubMed  Google Scholar 

  15. Henry A, Chen G. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys Rev Lett. 2008;101:235502.

    Article  PubMed  Google Scholar 

  16. Cui K, Ma Z, Tian N, Su F, Liu D, Li L. Multiscale and multistep ordering of flow-induced nucleation of polymers. Chem Rev. 2018;118:1840–86.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng H, Quan Y, Zheng G, Dai K, Liu C, Shen C. Fabrication of a polymer/aligned shish-kebab composite: microstructure and mechanical properties. RSC Adv. 2015;5:60392–60400.

    Article  CAS  Google Scholar 

  18. Wang Z, An M, Xu H, Lv Y, Tian F, Gu Q. Structural evolution from shish-kebab to fibrillar crystals during hot-stretching process of gel spinning ultra-high molecular weight polyethylene fibers obtained from low concentration solution. Polymer. 2017;120:244–54.

    Article  CAS  Google Scholar 

  19. Lv F, Chen X, Wan C, Su F, Ji Y, Lin Y, et al. Deformation of ultrahigh molecular weight polyethylene precursor fiber: crystal slip with or without melting. Macromolecules. 2017;50:6385–95.

    Article  CAS  Google Scholar 

  20. Ronca S, Igarashi T, Forte G, Rastogi S. Metallic-like thermal conductivity in a lightweight insulator: solid-state processed ultra high molecular weight polyethylene tapes and films. Polymer. 2017;123:203–10.

    Article  CAS  Google Scholar 

  21. Xu Y, Kraemer D, Song B, Jiang Z, Zhou J, Loomis J, et al. Nanostructured polymer films with metal-like thermal conductivity. Nat Commun. 2019;10:1771.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang RC, Huang Z, Sun D. New insights into thermal conductivity of uniaxially stretched high density polyethylene films. Polymer. 2018;154:42–7

    Article  CAS  Google Scholar 

  23. Lu T, Kim K, Li X, Zhou J, Chen G, Liu J. Thermal transport in semicrystalline polyethylene by molecular dynamics simulation. J Appl Phys. 2018;123:015107.

    Article  Google Scholar 

  24. Kwon OH, Ha T, Kim DG, Kim BG, Kim YS, Shin TJ, et al. Anisotropy-driven high thermal conductivity in stretchable poly(vinyl alcohol)/hexagonal boron nitride nanohybrid films. ACS Appl Mater interfaces. 2018;10:34625–33.

    Article  CAS  PubMed  Google Scholar 

  25. Hong SY, Lee YH, Park H, Jin SW, Jeong YR, Yun J, et al. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv Mater. 2016;28:930–5.

    Article  CAS  PubMed  Google Scholar 

  26. Song WL, Wang P, Cao L, Anderson A, Meziani MJ, Farr AJ, et al. Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew Chem Int Ed Engl. 2012;51:6498–501.

    Article  CAS  PubMed  Google Scholar 

  27. Gao Y, Müller-Plathe F. Molecular dynamics study on the thermal conductivity of the endgrafted carbon nanotubes filled polyamide-6.6 nanocomposites. J Phys Chem C. 2018;122:1412–21.

    Article  CAS  Google Scholar 

  28. Ulbricht M. Advanced functional polymer membranes. Polymer. 2006;47:2217–62.

    Article  CAS  Google Scholar 

  29. Knoche T, Lund R, Prymak O, Epple M, Ulbricht M. Effect of annealing temperature on pore formation in preparation of advanced polyethylene battery separator membranes. Mater Today Commun. 2016;8:23–30.

    Article  CAS  Google Scholar 

  30. Zhang SS. A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources. 2007;164:351–64.

    Article  CAS  Google Scholar 

  31. Chen Q, Chen D, Kang J, Cao Y, Chen J. Structure evolution of polyethylene in sequential biaxial stretching along the first tensile direction. Ind Eng Chem Res. 2019;58:12419–30.

    Article  CAS  Google Scholar 

  32. Wang XW, Wu PY. Preparation of highly thermally conductive polymer composite at low filler content via a self-assembly process between polystyrene microspheres and boron nitride nanosheets. ACS Appl Mater Interfaces. 2017;9:19934–44.

    Article  CAS  PubMed  Google Scholar 

  33. Chen J, Huang X, Sun B, Jiang P. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano. 2019;13:337–45.

    Article  CAS  PubMed  Google Scholar 

  34. Yu S, Lee JW, Han TH, Park C, Kwon Y, Hong SM, et al. Copper shell networks in polymer composites for efficient thermal conduction. ACS Appl Mater Interfaces. 2013;5:11618–22.

    Article  CAS  PubMed  Google Scholar 

  35. Hashimoto Y, Nishitsuji S, Kurose T, Ito H. Structural formation of UHMWPE film tracked by real-time retardation measurements during uniaxial/biaxial stretching. Materials. 2018;11:2292.

    Article  PubMed Central  Google Scholar 

  36. Loomis J, Ghasemi H, Huang X, Thoppey N, Wang J, Tong JK, et al. Continuous fabrication platform for highly aligned polymer films. Technology. 2014;02:189–99.

    Article  Google Scholar 

  37. Smook JPJ. Influence of draw ratio on morphological and structural changes in hot-drawing of UHMW polyethylene fibers as revealed by DSC. Colloid Polym Sci. 1984;262:712–22.

    Article  CAS  Google Scholar 

  38. Tian Y, Zhu CZ, Gong JH, Ma JH, Xu J. Transition from shish-kebab to fibrillar crystals during ultra-high hot stretching of ultra-high molecular weight polyethylene fibers: In situ small and wide angle X-ray scattering studies. Eur Polym J. 2015;73:127–36.

    Article  CAS  Google Scholar 

  39. McDaniel PB, Deitzel JM, Gillespie JW. Structural hierarchy and surface morphology of highly drawn ultra high molecular weight polyethylene fibers studied by atomic force microscopy and wide angle X-ray diffraction. Polymer. 2015;69:148–58.

    Article  CAS  Google Scholar 

  40. An M, Xu H, Lv Y, Gu Q, Tian F, Wang Z. An in situ small-angle X-ray scattering study of the structural effects of temperature and draw ratio of the hot-drawing process on ultra-high molecular weight polyethylene fibers. Rsc Adv. 2016;6:51125–34.

    Article  CAS  Google Scholar 

  41. An M, Xu H, Lv Y, Duan T, Tian F, Hong L, et al. Ultra-strong gel-spun ultra-high molecular weight polyethylene fibers filled with chitin nanocrystals. Rsc Adv. 2016;6:20629–36.

    Article  CAS  Google Scholar 

  42. Zhang QL, Zhang R, Meng LP, Lin YF, Chen XW, Li XY, et al. Biaxial stretch-induced crystallization of poly(ethylene terephthalate) above glass transition temperature: the necessary of chain mobility. Polymer. 2016;101:15–23.

    Article  CAS  Google Scholar 

  43. Wan C, Chen X, Lv F, Chen X, Meng L, Li L. Biaxial stretch-induced structural evolution of polyethylene gel films: crystal melting recrystallization and tilting. Polymer. 2019;164:59–66.

    Article  CAS  Google Scholar 

  44. Xiang D, Harkin-Jones E, Linton D. Effect of high temperature, biaxial stretching on the thermal and mechanical properties of HDPE/MWCNT sheet. Proceedings of Pps-30. In: The 30th International Conference of the Polymer Processing Society 1664. 2015.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51573118, U1630139, and 51721091), Program for Changjiang Scholars and Innovative Research Team in University (IRT-15R48), State Key Laboratory of Polymer Materials Engineering, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Wu or Shaoyun Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhang, T., Zhou, Y. et al. Enhanced in-plane thermal conductivity of ultrahigh molecular weight polyethylene films via a new design of a two-step biaxial stretching mode. Polym J 53, 1371–1381 (2021). https://doi.org/10.1038/s41428-021-00516-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00516-9

Search

Quick links