Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Interfacial preparation of ferroelectric polymer nanostructures for electronic applications

Abstract

Ferroelectric polymers are a family of crystalline polymers with reversible remanent polarization originating from their unique chemical structures and molecular packing. As an important ferroelectric polymer, poly(vinylidene fluoride) (PVDF) and its copolymers have been exploited for various applications, including nonvolatile memories, energy harvesters, and piezoelectric/pyroelectric sensors. To achieve better performance in PVDF-based devices, crystallization manipulation and controllable nanostructure formation are unavoidable and are of crucial importance. For this review, recent exploitation of the control of PVDF ferroelectric polymer crystallization at the nanoscale was specifically examined and summarized to provide insight into the future development of ferroelectric polymer nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kawai H. The piezoelectricity of poly(vinylidene fluoride). Jpn J Appl Phys. 1969;8:975–6.

    Article  CAS  Google Scholar 

  2. Glass AM, McFee JH, Bergman JG Jr. Pyroelectric properties of polyvinylidene flouride and its use for infrared detection. J Appl Phys. 1971;42:5219–22.

    Article  CAS  Google Scholar 

  3. Bergman JG Jr, McFee JH, Crane GR. Pyroelectricity and optical second harmonic generation in polyvinylidene fluoride films. Appl Phys Lett. 1971;18:203–5.

    Article  CAS  Google Scholar 

  4. Hu Z, Tian M, Nysten B, Jonas AM. Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat Mater. 2009;8:62–7.

    Article  CAS  PubMed  Google Scholar 

  5. Park YJ, Bae I, Kang SJ, Chang J, Park C. Control of thin ferroelectric polymer films for non-volatile memory applications. IEEE Trans Dielectr Electr Insul. 2010;17:1135–63.

    Article  CAS  Google Scholar 

  6. Zhu H, Fu C, Mitsuishi M. Organic ferroelectric field-effect transistor memories with poly(vinylidene fluoride) gate insulators and conjugated semiconductor channels: a review. Polym Int. 2020. https://doi.org/10.1002/pi.6029.

  7. Kang SJ, Park JP, Bae I, Kim KJ, Kim H, Bauer S. et al. Printable ferroelectric PVDF/PMMA blend films with ultralow roughness for low voltage non-volatile polymer memory. Adv Funct Mater. 2009;19:2812–8.

    Article  CAS  Google Scholar 

  8. Hwang SK, Bae I, Kim RH, Park C. Flexible non-volatile ferroelectric polymer memory with gate-controlled multilevel operation. Adv Mater. 2012;24:5910–4.

    Article  CAS  PubMed  Google Scholar 

  9. Haque RI, Vie R, Germainy M, Valbin L, Benaben P, Boddaert X. Inkjet printing of high molecular weight PVDF-TrFE for flexible electronics. Flex Print Electron. 2015;1:015001.

    Article  CAS  Google Scholar 

  10. Chen X, Han X, Shen Q-D. PVDF-based ferroelectric polymers in modern flexible electronics. Adv Electron Mater. 2017;3:1600460.

    Article  CAS  Google Scholar 

  11. Sato J, Sekine T, Wang Y, Takeda Y, Matsui H, Kumaki D. et al. Ferroelectric polymer-based fully printed flexible strain rate sensors and their application for human motion capture. Sens Actuat A Phys. 2019;295:93–8.

    Article  CAS  Google Scholar 

  12. Natta G, Allegra G, Bassi IW, Sianesi D, Caporiccio G, Torti E. Isomorphism phenomena in systems containing fluorinated polymers and in new fluorinated copolymers. J Polym Sci A. 1965;3:4263–78.

    CAS  Google Scholar 

  13. Hasegawa R, Takahashi Y, Chatani Y, Tadokoro H. Crystal structures of three crystalline forms of poly(vinylidene fluoride). Polym J. 1972;3:600–10.

    Article  CAS  Google Scholar 

  14. Takahashi Y, Tadokoro H. Crystal structure of form III of poly(vinylidene fluoride). Macromolecules. 1980;13:1317–8.

    Article  CAS  Google Scholar 

  15. Lovinger AJ. Unit cell of the γ phase of poly(vinylidene fluoride). Macromolecules. 1981;14:322–5.

    Article  CAS  Google Scholar 

  16. Furukawa T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. 1989;18:143–211.

    Article  CAS  Google Scholar 

  17. Kepler RG, Anderson RA. Ferroelectric polymers. Adv. Phys. 1992;41:1–57.

    Article  CAS  Google Scholar 

  18. Hasegawa R, Tanabe Y, Kobayashi M, Tadokoro H, Sawaoka A, Kawai N. Structural studies of pressure-crystallized polymers. I. Heat treatment of oriented polymers under high pressure. J Polym Sci A-2 Polym Phys. 1970;8:1073–87.

    Article  CAS  Google Scholar 

  19. Hasegawa R, Kobayashi M, Tadokoro H. Molecular conformation and packing of poly(vinylidene fluoride). Stability of three crystalline forms and the effect of high pressure. Polym J. 1972;3:591–9.

    Article  CAS  Google Scholar 

  20. Gomes J, Serrado Nunes J, Sencadas V, Lanceros-Mendez S. Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct. 2010;19:065010.

    Article  CAS  Google Scholar 

  21. Li L, Zhang M, Rong M, Ruan W. Studies on the transformation process of PVDF from α to β phase by stretching. RSC Adv. 2014;4:3938–43.

    Article  CAS  Google Scholar 

  22. Sencadas V, Gregorio R, Lanceros-Méndez S. α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci B. 2009;48:514–25.

    Article  CAS  Google Scholar 

  23. Lu FJ, Hsu SL. Spectroscopic study of the electric field induced microstructural changes in poly(vinylidene fluoride). Polymer. 1984;25:1247–52.

    Article  CAS  Google Scholar 

  24. Bune AV, Fridkin VM, Ducharme S, Blinov LM, Palto SP, Sorokin AV. et al. Two-dimensional ferroelectric films. Nature. 1998;391:874–7.

    Article  CAS  Google Scholar 

  25. Fridkin VM, Ducharme S, Bune AV, Palto SP, Yudin SG, Blinov LM. Two-dimensional ferroelectrics. Ferroelectrics. 2000;236:1–10.

    Article  CAS  Google Scholar 

  26. Zhu H, Mitsuishi M, Miyashita T. Facile preparation of highly oriented poly(vinylidene fluoride) Langmuir–Blodgett nanofilms assisted by amphiphilic polymer nanosheets. Macromolecules. 2012;45:9076–84.

    Article  CAS  Google Scholar 

  27. Zhu H, Matsui J, Yamamoto S, Miyashita T, Mitsuishi M. Solvent-dependent properties of poly(vinylidene fluoride) monolayers at the air–water interface. Soft Matter. 2015;11:1962–72.

    Article  CAS  PubMed  Google Scholar 

  28. Chen S, Li X, Yao K, Eng Hock Tay F, Kumar A, Zeng K. Self-polarized ferroelectric PVDF homopolymer ultra-thin films derived from Langmuir–Blodgett deposition. Polymer. 2012;53:1404–8.

    Article  CAS  Google Scholar 

  29. Kumar C, Viswanath P. Solvent driven polymorphism in Langmuir and Langmuir Schaefer film of poly(vinylidene fluoride). Eur Polym J. 2017;86:132–42.

    Article  CAS  Google Scholar 

  30. Sanfelice RC, Balogh DT, Lederle F, Adams J, Beuermann S. Studies of Langmuir and Langmuir–Schaefer films of poly(3-hexylthiophene) and poly(vinylidene fluoride). J Phys Chem B. 2020;124:7037–45.

    Article  CAS  PubMed  Google Scholar 

  31. Xiao Z, Dong Q, Sharma P, Yuan Y, Mao B, Tian W. et al. Synthesis and application of ferroelectric P(VDF-TrFE) nanoparticles in organic photovoltaic devices for high efficiency. Adv Energy Mater. 2013;3:1581–8.

    Article  CAS  Google Scholar 

  32. Fu C, Zhu H, Hoshino N, Akutagawa T, Mitsuishi M. Interfacial nanostructuring of poly(vinylidene fluoride) homopolymer with predominant ferroelectric phases. Langmuir. 2020;36:14083–91.

    Article  CAS  PubMed  Google Scholar 

  33. Langmuir I. The constitution and fundamental properties of solids and liquids. II. Liquids. J Am Chem Soc. 1917;39:1848–906.

    Article  CAS  Google Scholar 

  34. Swalen JD, Allara DL, Andrade JD, Chandross EA, Garoff S, Israelachvili J. et al. Molecular monolayers and films. A panel report for the Materials Sciences Division of the Department of Energy. Langmuir. 1987;3:932–50.

    Article  CAS  Google Scholar 

  35. Jacquemain D, Grayer Wolf S, Leveiller F, Deutsch M, Kjaer K, Als-Nielsen J. et al. Two-dimensional crystallography of amphiphilic molecules at the air–water interface. Angew Chem Int Ed. 1992;31:130–52.

    Article  Google Scholar 

  36. Palto S, Blinov L, Bune A, Dubovik E, Fridkin V, Petukhova N. et al. Ferroelectric Langmuir–Blodgett films. Ferroelectr Lett. 1995;19:65–8.

    Article  CAS  Google Scholar 

  37. Ducharme S, Fridkin V, Bune A, Palto S, Blinov L, Petukhova N. et al. Intrinsic ferroelectric coercive field. Phys Rev Lett. 2000;84:175–8.

    Article  CAS  PubMed  Google Scholar 

  38. Vizdrik G, Ducharme S, Fridkin V, Yudin S. Kinetics of ferroelectric switching in ultrathin films. Phys Rev B. 2003;68:094113.

    Article  CAS  Google Scholar 

  39. Zhu H, Yamamoto S, Matsui J, Miyashita T, Mitsuishi M. Highly oriented poly(vinylidene fluoride-co-trifluoroethylene) ultrathin films with improved ferroelectricity. RSC Adv. 2016;6:32007–12.

    Article  CAS  Google Scholar 

  40. Miyashita T, Mizuta Y, Matsuda M. Studies on Langmuir-Blodgett multilayer formation from preformed poly(N-alkylacrylamides). Br Polym J. 1990;22:327–31.

    Article  CAS  Google Scholar 

  41. Endo H, Mitsuishi M, Miyashita T. Free-standing ultrathin films with universal thickness from nanometer to micrometer by polymer nanosheet assembly. J Mater Chem. 2008;18:1302–8.

    Article  CAS  Google Scholar 

  42. Mitsuishi M, Matsui J, Miyashita T. Photofunctional thin film devices composed of polymer nanosheet assemblies. J Mater Chem. 2009;19:325–9.

    Article  CAS  Google Scholar 

  43. Ishifuji M, Mitsuishi M, Miyashita T. Bottom-up design of hybrid polymer nanoassemblies elucidates plasmon-enhanced second harmonic generation from nonlinear optical dyes. J Am Chem Soc. 2009;131:4418–24.

    Article  CAS  PubMed  Google Scholar 

  44. Yamamoto S, Uchiyama S, Miyashita T, Mitsuishi M. Multimodal underwater adsorption of oxide nanoparticles on catechol-based polymer nanosheets. Nanoscale. 2016;8:5912–9.

    Article  CAS  PubMed  Google Scholar 

  45. Matsui J, Mitsuishi M, Miyashita T. Characterization of the molecular environment of polymer Langmuir−Blodgett films using a pyrene fluorescent probe. Macromolecules. 1999;32:381–6.

    Article  CAS  Google Scholar 

  46. Mitsuishi M, Zhao F, Kim Y, Watanabe A, Miyashita T. Preparation of ultrathin silsesquioxane nanofilms via polymer Langmuir−Blodgett films. Chem Mater. 2008;20:4310–6.

    Article  CAS  Google Scholar 

  47. Kim Y, Zhao F, Mitsuishi M, Watanabe A, Miyashita T. Photoinduced high-quality ultrathin SiO2 film from hybrid nanosheet at room temperature. J Am Chem Soc. 2008;130:11848–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ishizaki Y, Yamamoto S, Miyashita T, Mitsuishi M. Synthesis and porous SiO2 nanofilm formation of the silsesquioxane-containing amphiphilic block copolymer. Langmuir. 2018;34:8007–14.

    Article  CAS  PubMed  Google Scholar 

  49. Matsui J, Yoshida S, Mikayama T, Aoki A, Miyashita T. Fabrication of polymer Langmuir−Blodgett films containing regioregular poly(3-hexylthiophene) for application to field-effect transistor. Langmuir. 2005;21:5343–8.

    Article  CAS  PubMed  Google Scholar 

  50. Matsui J, Sato Y, Mikayama T, Miyashita T. Fabrication of electrochemical transistor based on π−conjugate polymer Langmuir−Blodgett film. Langmuir. 2007;23:8602–6.

    Article  CAS  PubMed  Google Scholar 

  51. Yamamoto S, Nishina N, Matsui J, Miyashita T, Mitsuishi M. High-density and monolayer-level integration of π-conjugated units: amphiphilic carbazole homopolymer Langmuir–Blodgett films. Langmuir. 2018;34:10491–7.

    Article  CAS  PubMed  Google Scholar 

  52. Bashar MM, Ohara H, Zhu H, Yamamoto S, Matsui J, Miyashita T. et al. Cellulose nanofiber nanosheet multilayers by the Langmuir–Blodgett technique. Langmuir. 2019;35:8052–9.

    Article  CAS  PubMed  Google Scholar 

  53. Zhu H, Akkus B, Gao Y, Liu Y, Yamamoto S, Matsui J. et al. Regioselective synthesis of eight-armed cyclosiloxane amphiphile for functional 2D and 3D assembly motifs. ACS Appl Mater Interfaces. 2017;9:28144–50.

    Article  CAS  PubMed  Google Scholar 

  54. Li B, Wu Y, Liu M, Esker AR. Brewster angle microscopy study of poly(ε-caprolactone) crystal growth in langmuir films at the air/water interface. Langmuir. 2006;22:4902–5.

    Article  CAS  PubMed  Google Scholar 

  55. Bottino A, Capannelli G, Munari S, Turturro A. Solubility parameters of poly(vinylidene fluoride). J Polym Sci B Polym Phys. 1988;26:785–94.

    Article  CAS  Google Scholar 

  56. Zhu H, Yamamoto S, Matsui J, Miyashita T, Mitsuishi M. Resistive non-volatile memories fabricated with poly(vinylidene fluoride)/poly(thiophene) blend nanosheets. RSC Adv. 2018;8:7963–8.

    Article  CAS  PubMed Central  Google Scholar 

  57. Zheng J, He A, Li J, Han CC. Polymorphism control of poly(vinylidene fluoride) through electrospinning. Macromol Rapid Commun. 2007;28:2159–62.

    Article  CAS  Google Scholar 

  58. Mandal D, Yoon S, Kim KJ. Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor. Macromol Rapid Commun. 2011;32:831–7.

    Article  CAS  PubMed  Google Scholar 

  59. Steinhart M, Senz S, Wehrspohn RB, Gösele U, Wendorff JH. Curvature-directed crystallization of poly(vinylidene difluoride) in nanotube walls. Macromolecules. 2003;36:3646–51.

    Article  CAS  Google Scholar 

  60. García-Gutiérrez M-C, Linares A, Hernandez JJ, Rueda DR, Ezquerra TA, Poza P. et al. Confinement-induced one-dimensional ferroelectric polymer arrays. Nano Lett. 2010;10:1472–6.

    Article  PubMed  CAS  Google Scholar 

  61. Okada D, Kaneko H, Kato K, Furumi S, Takeguchi M, Yamamoto Y. Colloidal crystallization and ionic liquid induced partial β-phase transformation of poly(vinylidene fluoride) nanoparticles. Macromolecules. 2015;48:2570–5.

    Article  CAS  Google Scholar 

  62. Jung JT, Kim FJ, Wang HH, di Nicolo E, Drioli E, Lee YM. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J Membr Sci. 2016;514:250–63.

    Article  CAS  Google Scholar 

  63. Naber RCG, Tanase C, Paul WMB, Gelinck GH, Marsman AW, Touwslager FJ. et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nat Mater. 2005;4:243–8.

    Article  CAS  Google Scholar 

  64. Li H, Wang R, Han S-T, Zhou Y. Ferroelectric polymers for non-volatile memory devices: a review. Polym Int. 2020;69:533–44.

    Article  CAS  Google Scholar 

  65. Asadi K, de Leeuw DM, de Boer B, Blom PWM. Organic non-volatile memories from ferroelectric phase-separated blends. Nat Mater. 2008;7:547–50.

    Article  CAS  PubMed  Google Scholar 

  66. Asadi K, Wondergem HJ, Moghaddam RS, McNeill CR, Stingelin N, Noheda B. et al. Spinodal decomposition of blends of semiconducting and ferroelectric polymers. Adv. Funct Mater. 2011;21:1887–94.

    Article  CAS  Google Scholar 

  67. McNeill CR, Asadi K, Watts B, Blom PWM, de Leeuw DM. Structure of phase-separated ferroelectric/semiconducting polymer blends for organic non-volatile memories. Small. 2010;6:508–12.

    Article  CAS  PubMed  Google Scholar 

  68. Sung SH, Boudouris BW. Systematic control of the nanostructure of semiconducting-ferroelectric polymer composites in thin film memory devices. ACS Macro Lett. 2015;4:293–7.

    Article  CAS  Google Scholar 

  69. Li M, Stingelin N, Michels JJ, Spijkman M-J, Asadi K, Beerends R. et al. Processing and low voltage switching of organic ferroelectric phase-separated bistable diodes. Adv Funct Mater. 2012;22:2750–7.

    Article  CAS  Google Scholar 

  70. Asadi K, Li M, Stingelin N, Blom PWM, Leeuw DM. Crossbar memory array of organic bistable rectifying diodes for nonvolatile data storage. Appl Phys Lett. 2010;97:193308.

    Article  CAS  Google Scholar 

  71. Khan MA, Bhansali US, Cha D, Alshareef HN. All-polymer bistable resistive memory device based on nanoscale phase – separated PCBM – ferroelectric blends. Adv Funct Mater. 2013;23:2145–52.

    Article  CAS  Google Scholar 

  72. van Breemen AJJM, van der Steen J-L, van Heck G, Wang R, Khikhlovskyi V, Kemerink M. et al. Crossbar arrays of nonvolatile, rewritable polymer ferroelectric diode memories on plastic substrates. Appl Phys Express. 2014;7:031602.

    Article  CAS  Google Scholar 

  73. van Breemen AJJM, Zaba T, Khikhlovskyi V, Michels J, Janssen RAJ, Kemerink M. et al. Surface directed phase separation of semiconductor ferroelectric polymer blends and their use in non-volatile memories. Adv Funct Mater. 2015;25:278–86.

    Article  CAS  Google Scholar 

  74. Khikhlovskyi V, Wang R, van Breemen AJJM, Gelinck GH, Janssen RAJ, Kemerink M. Nanoscale organic ferroelectric resistive switches. J Phys Chem C. 2014;118:3305–12.

    Article  CAS  Google Scholar 

  75. Lee J, van Breemen AJJM, Khikhlovskyi V, Kemerink M, Janssen RAJ, Gelinck GH. Pulse-modulated multilevel data storage in an organic ferroelectric resistive memory diode. Sci Rep. 2016;6:24407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu H, Yamamoto S, Matsui J, Miyashita T, Mitsuishi M. Ferroelectricity of poly(vinylidene fluoride) homopolymer Langmuir–Blodgett nanofilms. J Mater Chem C. 2014;2:6727–31.

    Article  CAS  Google Scholar 

  77. Nakajima T, Abe R, Takahashi Y, Furukawa T. Intrinsic switching characteristics of ferroelectric ultrathin vinylidene fluoride/trifluoroethylene copolymer films revealed using Au electrode. Jpn J Appl Phys. 2005;44:L1385–8.

    Article  CAS  Google Scholar 

  78. Zhu H, Yamamoto S, Matsui J, Miyashita T, Mitsuishi M. Asymmetric ferroelectric switching based on an Al/PVDF Langmuir-Blodgett nanofilm/PEDOT:PSS/Al device. Mol Cryst Liq Cryst. 2015;618:89–94.

    Article  CAS  Google Scholar 

  79. Zhang X, Tong J, Zhu H, Wang Z, Zhou L, Wang S. et al. Room temperature magnetoresistance effects in ferroelectric poly(vinylidene fluoride) spin valves. J Mater Chem C. 2017;5:5055–62.

    Article  CAS  Google Scholar 

  80. Zhang X, Lin J, Zhang R, Qin G, Zhu H, Miyashita T, et al. Organic spin valves with poly(vinylidene fluoride) barriers. 2016 IEEE International Nanoelectronics Conference (INEC). https://doi.org/10.1109/INEC.2016.7589269.

  81. Zhang QM, Bharti V, Zhao X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science. 1998;280:2101–4.

    Article  CAS  PubMed  Google Scholar 

  82. Neese B, Chu B, Lu S-G, Wang Y, Furman E, Zhang QM. Large electrocaloric effect in ferroelectric polymers near room temperature. Science. 2008;321:821–3.

    Article  CAS  PubMed  Google Scholar 

  83. Yang L, Li X, Allahyarov E, Taylor PL, Zhang QM, Zhu L. Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect. Polymer. 2013;54:1709–28.

    Article  CAS  Google Scholar 

  84. Zhu H, Miyashita T, Mitsuishi M. Energy storage behaviors in ferroelectric capacitors fabricated with sub-50 nm poly(vinylidene fluoride) Langmuir–Blodgett nanofilms. Polym J. 2019;51:795–801.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was partially supported by Grants-in-Aid for Young Scientists (B) (16K17953), Early Career Scientists (19K15625), and Scientific Research (B) (16H04197) from the Japan Society for the Promotion of Science (JSPS). The work was also supported by the Cooperative Research Program “Network Joint Research Center for Materials and Devices”: Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials (MEXT), the Morinomiyako Project for Empowering Women in Research, the Tohoku University Center for Gender Equality Promotion (TUMUG), and the TAGEN project, Tohoku University. The author would like to express her sincerest gratitude to Prof. Masaya Mitsuishi (Tohoku University), Prof. Miyashita Tokuji (Emeritus Prof., Tohoku Univ.), Prof. Jun Matsui (Yamagata University), and all members of the Functional Macromolecular Chemistry group, Tohoku University for their continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huie Zhu.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H. Interfacial preparation of ferroelectric polymer nanostructures for electronic applications. Polym J 53, 877–886 (2021). https://doi.org/10.1038/s41428-021-00491-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00491-1

This article is cited by

Search

Quick links