Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Development of functionalized nanocrystalline cellulose-based polyelectrolytes with high water uptake

Abstract

Dicarboxylate nanocrystalline cellulose (DCNC) polyelectrolytes were prepared from nanocrystalline cellulose (NCC) by introducing carboxylate units at the C-2 and C-3 positions of a glucose moiety through a two-step selective oxidation process. The polyelectrolyte nature of the DCNC was investigated by measuring the water uptake capacity with a customized ion exchange system. The equilibrium water uptake capacity of DCNC was almost ten times greater than that of conventional C-6 functionalized monocarboxylated NCC. The conversion of NCC to DCNC ensured the presence of a large number of dissociable electrolytic ions and high degrees of conformational freedom in the material to generate high osmotic pressure. Conductivity and dynamic light-scattering measurements were performed to relate the water uptake capacity with the chemical and structural changes of the polyelectrolytes. Furthermore, it was observed that the ionic strength of the solution played a critical role in controlling the water uptake capacity of the material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 2018;12:3117–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buchholz FL. Superabsorbent polymers: an idea whose time has come. J Chem Educ. 1996;73:512.

    Article  CAS  Google Scholar 

  3. Martau GA, Mihai M, Vodnar DC. The use of chitosan, alginate, and pectin in the biomedical and food sector-biocompatibility, bioadhesiveness, and biodegradability. Polym (Basel). 2019;11:11

    Google Scholar 

  4. Shuster WW, Wang LK. Role of polyelectrolytes in the filtration of colloidal particles from water and wastewater. Sep Purif Rev. 1977;6:153–87.

    Article  CAS  Google Scholar 

  5. Tripathi BP, Dubey NC, Stamm M. Functional polyelectrolyte multilayer membranes for water purification applications. J Hazard Mater 2013;252–253:401–12.

    Article  PubMed  CAS  Google Scholar 

  6. Zhao J. et al. Preparation of the polyelectrolyte complex hydrogel of biopolymers via a semi-dissolution acidification sol-gel transition method and its application in solid-state supercapacitors. J Power Sources. 2018;378:603–9.

    Article  CAS  Google Scholar 

  7. Meka VS, Sing MKG, Pichika MR, Nali SR, Kolapalli VRM, Kesharwani P. A comprehensive review on polyelectrolyte complexes. Drug Discov Today. 2017;22:1697–706.

    Article  CAS  PubMed  Google Scholar 

  8. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.

    Article  CAS  Google Scholar 

  9. Rinaudo M. Polyelectrolytes derived from natural polysaccharides. Monomers Polym Compos Renew Resour. 2008;495–516. https://doi.org/10.1016/B978-0-08-045316-3.00024-7.

  10. Habibi Y. Key advances in the chemical modification of nanocelluloses. Chem Soc Rev. 2014;43:1519–42.

    Article  CAS  PubMed  Google Scholar 

  11. Li YY, Wang B, Ma MG, Wang B. Review of recent development on preparation, properties, and applications of cellulose-based functional materials. Int J Polym Sci. 2018. https://doi.org/10.1155/2018/8973643.

  12. Iwamoto S, Kai W, Isogai A, Iwata T. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules. 2009;10:2571–76.

    Article  CAS  PubMed  Google Scholar 

  13. Habibi Y, Foulon L, Aguié-Béghin V, Molinari M, Douillard R. Langmuir-Blodgett films of cellulose nanocrystals: preparation and characterization. J Colloid Interface Sci. 2007;316:388–97.

    Article  CAS  PubMed  Google Scholar 

  14. Shojaeiarani J, Bajwa D, Shirzadifar A. A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels. Carbohydr Polym. 2019;216:247–59.

    Article  CAS  PubMed  Google Scholar 

  15. Hashem M, Hauser P, Smith B. Reaction efficiency for cellulose cationization using 3-chloro-2- hydroxypropyl trimethyl ammonium chloride. Text Res J. 2003;73:1017–23.

    Article  CAS  Google Scholar 

  16. Hemraz UD, Campbell KA, Burdick JS, Ckless K, Boluk Y, Sunasee R. Cationic poly(2-aminoethylmethacrylate) and polyN-(2-aminoethylmethacrylamide) modified cellulose nanocrystals: Synthesis, characterization, and cytotoxicity. Biomacromolecules. 2015;16:319–25.

    Article  CAS  PubMed  Google Scholar 

  17. Feese E, Sadeghifar H, Gracz HS, Argyropoulos DS, Ghiladi RA. Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules. 2011;12:3528–39.

    Article  CAS  PubMed  Google Scholar 

  18. Vasconcelos NF. et al. Chemically modified cellulose nanocrystals as polyanion for preparation of polyelectrolyte complex. Cellulose. 2019;26:1725–46.

    Article  CAS  Google Scholar 

  19. Wang Y, Wang X, Xie Y, Zhang K. Functional nanomaterials through esterification of cellulose: a review of chemistry and application. Cellulose. 2018;25:3703–31.

    Article  CAS  Google Scholar 

  20. Zaman M, Xiao H, Chibante F, Ni Y. Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydr Polym. 2012;89:163–70.

    Article  CAS  PubMed  Google Scholar 

  21. Moral A, Aguado R, Ballesteros M, Tijero A. Cationization of alpha-cellulose to develop new sustainable products. Int J Polym Sci. 2015;2015. https://doi.org/10.1155/2015/283963.

  22. Sharma A, Thakur M, Bhattacharya M, Mandal T, Goswami S. Commercial application of cellulose nano-composites—a review. Biotechnol Rep. 2019;21:e00316

    Article  Google Scholar 

  23. Ono T, Sugimoto T, Shinkai S, Sada K. Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents. Nat Mater. 2007;6:429–33.

    Article  CAS  PubMed  Google Scholar 

  24. de Nooy AEJ, Besemer AC, van Bekkum H. Highly selective tempo mediated oxidation of primary alcohol groups in polysaccharides. Recl des Trav Chim des Pays‐Bas. 1994;113:165–6.

    Article  Google Scholar 

  25. Isogai A. Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci. 2013;59:449–59.

    Article  CAS  Google Scholar 

  26. Liimatainen H, Visanko M, Sirviö JA, Hormi OEO, Niinimaki J. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation. Biomacromolecules. 2012;13:1592–7.

    Article  CAS  PubMed  Google Scholar 

  27. Casu B. et al. Communications from research groups: Structure and conformation of polyalcohols and polyacids obtained from periodate oxyamylose and oxycellulose. Carbohydr Polym. 1982;2:283–7.

    Article  CAS  Google Scholar 

  28. Bondeson D, Mathew A, Oksman K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose. 2006;13:171–80.

    Article  CAS  Google Scholar 

  29. Veelaert S, de Wit D, Gotlieb KF, Verhé R. Chemical and physical transitions of periodate oxidized potato starch in water. Carbohydr Polym. 1997;33:153–62.

    Article  CAS  Google Scholar 

  30. Saito T, Kimura S, Nishiyama Y, Isogai A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules. 2007;8:2485–91.

    Article  CAS  PubMed  Google Scholar 

  31. Habibi Y, Chanzy H, Vignon MR. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose. 2006;13:679–87.

    Article  CAS  Google Scholar 

  32. Zhang K, Feng W, Jin C. Protocol efficiently measuring the swelling rate of hydrogels. MethodsX. 2020;7:100779.

    Article  PubMed  Google Scholar 

  33. Pourjavadi A, Hosseinzadeh H, Mazidi R. Modified carrageenan. 4. Synthesis and swelling behavior of crosslinked ΚC-g-AMPS superabsorbent hydrogel with antisalt and pH-responsiveness properties. J Appl Polym Sci. 2005;98:255–63.

    Article  CAS  Google Scholar 

  34. Xiang Q, Lee YY, Pettersson PO, Torget RW. Heterogeneous aspects of acid hydrolysis of α-cellulose. Appl Biochem Biotechnol. 2003;107:505–14.

    Article  Google Scholar 

  35. Fang Y, Takahashi R, Nishinari K. Protein/polysaccharide cogel formation based on gelatin and chemically modified schizophyllan. Biomacromolecules. 2005;6:3202–8.

    Article  CAS  PubMed  Google Scholar 

  36. Hofreiter BT, Wolff IA, Mehltretter CL. Chlorous acid oxidation of periodate oxidized cornstarch. J Am Chem Soc. 1957;79:6457–60.

    Article  CAS  Google Scholar 

  37. Plappert SF. et al. Transparent, flexible, and strong 2,3-dialdehyde cellulose films with high oxygen barrier properties. Biomacromolecules. 2018;19:2969–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Osório VM, Cardeal ZL. Analytical methods to assess carbonyl compounds in foods and beverages. J Braz Chem Soc. 2013;24:1711–8.

    Google Scholar 

  39. Floor M. et al. Structural and conformational effects on the complexation of calcium by 2,3-dicarboxy derivatives of β-cyclodextrin (cyclomaltoheptaose), amylose, and cellulose. Carbohydr Res. 1990;203:19–32.

    Article  CAS  Google Scholar 

  40. Hossain MA, Roy CK, Sarkar SD, Roy H, Howlader AH, Firoz SH. Improvement of strength of poly(acrylic acid) hydrogels by the incorporation of functionally modified nanocrystalline cellulose. Mater Adv. 2020;1:639–47.

    Article  Google Scholar 

  41. Chavan VB, Sarwade BD, Varma AJ. Morphology of cellulose and oxidised cellulose in powder form. Carbohydr Polym. 2002;50:41–5.

    Article  CAS  Google Scholar 

  42. Akhlaghi SP, Berry RC, Tam KC. Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose. 2013;20:1747–64.

    Article  CAS  Google Scholar 

  43. Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose. 2012;19:855–66.

    Article  CAS  Google Scholar 

  44. Julien S, Chornet E, Overend RP. Influence of acid pretreatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose. J Anal Appl Pyrolysis. 1993;27:25–43.

    Article  CAS  Google Scholar 

  45. Vicini S. et al. Thermal analysis and characterisation of cellulose oxidised with sodium methaperiodate. Thermochim Acta. 2004;418:123–30.

    Article  CAS  Google Scholar 

  46. Dan S, Banivaheb S, Hashemipour H, kalantari M. Synthesis, characterization and absorption study of chitosan-g-poly(acrylamide-co-itaconic acid) hydrogel Polym. Bull. 2020;78:1887–907.

  47. Abdel-Raouf ME, El-Saeed SM, Zaki EG, Al-Sabagh AM. Green chemistry approach for preparation of hydrogels for agriculture applications through modification of natural polymers and investigating their swelling properties. Egypt J Pet. 2018;27:1345–55.

    Article  Google Scholar 

  48. Harries D, May S, Ben-Shaul A. Counterion release in membrane–biopolymer interactions. Soft Matter. 2013;9:9268.

    Article  CAS  Google Scholar 

  49. Zhou HX, Pang X. Electrostatic interactions in protein structure, folding, binding, and condensation. Chem Rev. 2018;118:1691–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dobrynin AV, Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci. 2005;30:1049–118.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the financial support from Bangladesh University of Engineering and Technology (BUET) and the Ministry of Science and Technology (Government of the People’s Republic of Bangladesh) for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakhawat H. Firoz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motiur Rahman, M., Hasan Howlader, A., Rahman, E. et al. Development of functionalized nanocrystalline cellulose-based polyelectrolytes with high water uptake. Polym J 53, 913–921 (2021). https://doi.org/10.1038/s41428-021-00483-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00483-1

Search

Quick links