Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Healable soft materials based on ionic liquids and block copolymer self-assembly

Abstract

Ion gels, which are macromolecular networks filled with ionic liquids, are attracting significant interest owing to their unique physicochemical properties such as their nonflammability, negligibly low volatility, and high ionic conductivity. However, for greater applicability in electrochemical devices, these materials must have high mechanical strength while continuing to exhibit the desirable properties of ionic liquids. Therefore, functional ion gels that can self-heal in response to external stimuli or in an autonomous fashion are being investigated. In this review, we highlight the recent progress made by our group in the development of healable ion gels formed by the self-assembly of block copolymers in ionic liquids. First, photohealable ion gels that exploit the photoinduced morphological transitions of block copolymers in ionic liquids are described. Then, the molecular design of self-healing block copolymer-ion gels that show fast self-healing as well as high mechanical strength is discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwödiauer R. 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv Mater. 2014;26:149–62. https://doi.org/10.1002/adma.201303349

    Article  CAS  PubMed  Google Scholar 

  2. Wang C, Wang C, Huang Z, Xu S. Materials and structures toward soft electronics. Adv Mater. 2006;1801368. https://doi.org/10.1002/adma.201801368

  3. Wang H, Wang Z, Yang J, Xu C, Zhang Q, Peng Z. Ionic gels and their applications in stretchable electronics. Macromol Rapid Commun. 2018;39:1800246 https://doi.org/10.1002/marc.201800246

    Article  CAS  Google Scholar 

  4. Lim H, Kim HS, Qazi R, Kwon Y, Jeong J, Yeo W. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater. 2019;1901924. https://doi.org/10.1002/adma.201901924

  5. Yang C, Suo Z. Hydrogel ionotronics. Nat Rev Mater. 2018;3:125–42. https://doi.org/10.1038/s41578-018-0018-7

    Article  CAS  Google Scholar 

  6. Mindemark J, Lacey MJ, Bowden T, Brandell D. Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci 2018;81:114–43. https://doi.org/10.1016/j.progpolymsci.2017.12.004

    Article  CAS  Google Scholar 

  7. Ueki T, Watanabe M. Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules. 2008;41:3739–49. https://doi.org/10.1021/ma800171k

    Article  CAS  Google Scholar 

  8. Park MJ, Choi I, Hong J, Kim O. Polymer electrolytes integrated with ionic liquids for future electrochemical devices. J Appl Polym Sci 2013;129:2363–76. https://doi.org/10.1002/app.39064

    Article  CAS  Google Scholar 

  9. Ueno K, Tokuda H, Watanabe M. Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Phys Chem Chem Phys. 2010;12:1649 https://doi.org/10.1039/B921462N

    Article  CAS  PubMed  Google Scholar 

  10. Noda A, Watanabe M. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim Acta. 2000;45:1265–70. https://doi.org/10.1016/S0013-4686(99)00330-8

    Article  CAS  Google Scholar 

  11. Susan MABH, Kaneko T, Noda A, Watanabe M. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc 2005;127:4976–83. https://doi.org/10.1021/ja045155b

    Article  CAS  PubMed  Google Scholar 

  12. Kamio E, Yasui T, Iida Y, Gong JP, Matsuyama H. Inorganic/organic double-network gels containing ionic liquids. Adv Mater. 2017;29:1704118 https://doi.org/10.1002/adma.201704118

    Article  CAS  Google Scholar 

  13. Fujii K, Asai H, Ueki T, Sakai T, Imaizumi S, Chung U, et al. High-performance ion gel with tetra-PEG network. Soft Matter. 2012;8:1756–9. https://doi.org/10.1039/C2SM07119C

    Article  CAS  Google Scholar 

  14. He Y, Boswell PG, Bühlmann P, Lodge TP. Ion gels by self-assembly of a triblock copolymer in an ionic liquid. J Phys Chem B. 2007;111:4645–52. https://doi.org/10.1021/jp064574n

    Article  CAS  PubMed  Google Scholar 

  15. Lodge TP, Ueki T. Mechanically tunable, readily processable ion gels by self-assembly of block copolymers in ionic liquids. Acc Chem Res 2016;49:2107–14. https://doi.org/10.1021/acs.accounts.6b00308

    Article  CAS  Google Scholar 

  16. Tamate R, Hashimoto K, Ueki T, Watanabe M. Block copolymer self-assembly in ionic liquids. Phys Chem Chem Phys 2018;20:25123–39. https://doi.org/10.1039/C8CP04173C

    Article  CAS  PubMed  Google Scholar 

  17. Ueki T, Watanabe M. Upper critical solution temperature behavior of poly(N-isopropylacrylamide) in an ionic liquid and preparation of thermo-sensitive nonvolatile gels. Chem Lett. 2006;35:964–5. https://doi.org/10.1246/cl.2006.964

    Article  CAS  Google Scholar 

  18. Ueki T, Watanabe M. Lower critical solution temperature behavior of linear polymers in ionic liquids and the corresponding volume phase transition of polymer gels. Langmuir. 2007;23:988–90. https://doi.org/10.1021/la062986h

    Article  CAS  PubMed  Google Scholar 

  19. Ueki T, Watanabe M. Polymers in ionic liquids: dawn of neoteric solvents and innovative materials. Bull Chem Soc Jpn. 2012;85:33–50. https://doi.org/10.1246/bcsj.20110225

    Article  CAS  Google Scholar 

  20. Ueki T. Stimuli-responsive polymers in ionic liquids. Polym J. 2014;46:646–55. https://doi.org/10.1038/pj.2014.37

    Article  CAS  Google Scholar 

  21. He Y, Lodge TP. A thermoreversible ion gel by triblock copolymer self-assembly in an ionic liquid. Chem Commun. 2007;2732. https://doi.org/10.1039/b704490a

  22. Ueki T, Nakamura Y, Usui R, Kitazawa Y, So S, Lodge TP, et al. Photoreversible gelation of a triblock copolymer in an ionic liquid. Angew Chem Int Ed. 2015;54:3018–22. https://doi.org/10.1002/ange.201411526

    Article  CAS  Google Scholar 

  23. Ueki T, Usui R, Kitazawa Y, Lodge TP, Watanabe M. Thermally reversible ion gels with photohealing properties based on triblock copolymer self-assembly. Macromolecules. 2015;48:5928–33. https://doi.org/10.1021/acs.macromol.5b01366

    Article  CAS  Google Scholar 

  24. Ueki T, Nakamura Y, Yamaguchi A, Niitsuma K, Lodge TP, Watanabe M. UCST phase transition of azobenzene-containing random copolymer in an ionic liquid. Macromolecules. 2011;44:6908–14. https://doi.org/10.1021/ma2014244

    Article  CAS  Google Scholar 

  25. Ma X, Usui R, Kitazawa Y, Tamate R, Kokubo H, Watanabe M. Physicochemical characterization of a photoinduced sol–gel transition of an azobenzene-containing aba triblock copolymer/ionic liquid system. Macromolecules. 2017;50:6788–95. https://doi.org/10.1021/acs.macromol.7b01538

    Article  CAS  Google Scholar 

  26. Tamate R, Usui R, Hashimoto K, Kitazawa Y, Kokubo H, Watanabe M. Photo/thermoresponsive ABC triblock copolymer-based ion gels: photoinduced structural transitions. Soft Matter. 2018;14:9088–95. https://doi.org/10.1039/C8SM01578C

    Article  CAS  PubMed  Google Scholar 

  27. Zhou C, Hillmyer MA, Lodge TP. Efficient formation of multicompartment hydrogels by stepwise self-assembly of thermoresponsive ABC triblock terpolymers. J Am Chem Soc. 2012;134:10365–8. https://doi.org/10.1021/ja303841f

    Article  CAS  PubMed  Google Scholar 

  28. Wang C, Hashimoto K, Tamate R, Kokubo H, Watanabe M. Controlled sol-gel transitions of a thermoresponsive polymer in a photoswitchable azobenzene ionic liquid as a molecular trigger. Angew Chem Int Ed. 2018;57:227–30. https://doi.org/10.1002/anie.201710288

    Article  CAS  Google Scholar 

  29. Wang C, Hashimoto K, Tamate R, Kokubo H, Morishima K, Li X, et al. Viscoelastic change of block copolymer ion gels in a photo-switchable azobenzene ionic liquid triggered by light. Chem Commun. 2019;55:1710–3. https://doi.org/10.1039/C8CC08203K

    Article  CAS  Google Scholar 

  30. Kodama K, Nanashima H, Ueki T, Kokubo H, Watanabe M. Lower critical solution temperature phase behavior of linear polymers in imidazolium-based ionic liquids: effects of structural modifications. Langmuir. 2009;25:3820–4. https://doi.org/10.1021/la803945n

    Article  CAS  PubMed  Google Scholar 

  31. Kitazawa Y, Ueki T, Niitsuma K, Imaizumi S, Lodge TP, Watanabe M. Thermoreversible high-temperature gelation of an ionic liquid with poly(benzyl methacrylate-b-methyl methacrylate-b-benzyl methacrylate) triblock copolymer. Soft Matter. 2012;8:8067–74. https://doi.org/10.1039/C2SM25375E

    Article  CAS  Google Scholar 

  32. Kitazawa Y, Ueki T, Imaizumi S, Lodge TP, Watanabe M. Tuning of sol–gel transition temperatures for thermoreversible ion gels. Chem Lett. 2014;43:204–6. https://doi.org/10.1246/cl.130929

    Article  CAS  Google Scholar 

  33. Saruwatari A, Tamate R, Kokubo H, Watanabe M. Photohealable ion gels based on the reversible dimerisation of anthracene. Chem Commun. 2018;54:13371–4. https://doi.org/10.1039/C8CC07775D

    Article  CAS  Google Scholar 

  34. Song Y-K, Lee K-H, Hong W-S, Cho S-Y, Yu H-C, Chung C-M. Fluorescence sensing of microcracks based on cycloreversion of a dimeric anthracene moiety. J Mater Chem. 2012;22:1380–6. https://doi.org/10.1039/C1JM13709C

    Article  CAS  Google Scholar 

  35. Radl S, Kreimer M, Griesser T, Oesterreicher A, Moser A, Kern W, et al. New strategies towards reversible and mendable epoxy based materials employing [4πs+4πs] photocycloaddition and thermal cycloreversion of pendant anthracene groups. Polymer. 2015;80:76–87. https://doi.org/10.1016/j.polymer.2015.10.043

    Article  CAS  Google Scholar 

  36. Tamate R, Ueki T, Kitazawa Y, Kuzunuki M, Watanabe M, Akimoto AM, et al. Photo-dimerization induced dynamic viscoelastic changes in aba triblock copolymer-based hydrogels for 3D cell culture. Chem Mater. 2016;28:6401–8. https://doi.org/10.1021/acs.chemmater.6b02839

    Article  CAS  Google Scholar 

  37. Tamate R, Ueki T, Akimoto AM, Yoshida R, Oyama T, Kokubo H, et al. Photocurable ABA triblock copolymer-based ion gels utilizing photodimerization of coumarin. RSC Adv. 2018;8:3418–22. https://doi.org/10.1039/C7RA13181J

    Article  CAS  Google Scholar 

  38. Hayes R, Warr GG, Atkin R. Structure and nanostructure in ionic liquids. Chem Rev. 2015;115:6357–426. https://doi.org/10.1021/cr500411q

    Article  CAS  PubMed  Google Scholar 

  39. Noro A, Matsushita Y, Lodge TP. Thermoreversible supramacromolecular ion gels via hydrogen bonding. Macromolecules. 2008;41:5839–44. https://doi.org/10.1021/ma800739c

    Article  CAS  Google Scholar 

  40. Noro A, Matsushima S, He X, Hayashi M, Matsushita Y. Thermoreversible supramolecular polymer gels via metal–ligand coordination in an ionic liquid. Macromolecules. 2013;46:8304–10. https://doi.org/10.1021/ma401820x

    Article  CAS  Google Scholar 

  41. Trivedi TJ, Bhattacharjya D, Yu J-S, Kumar A. Functionalized agarose self-healing ionogels suitable for supercapacitors. ChemSusChem. 2015;8:3294–303. https://doi.org/10.1002/cssc.201500648

    Article  CAS  PubMed  Google Scholar 

  42. Guo P, Su A, Wei Y, Liu X, Li Y, Guo F, et al. Healable, highly conductive, flexible, and nonflammable supramolecular ionogel electrolytes for lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11:19413–20. https://doi.org/10.1021/acsami.9b02182

    Article  CAS  PubMed  Google Scholar 

  43. Aoki T, Kawashima M, Katono H, Sanui K, Ogata N, Okano T, et al. Temperature-responsive interpenetrating polymer networks constructed with poly(acrylic acid) and poly(N,N-dimethylacrylamide). Macromolecules. 1994;27:947–52. https://doi.org/10.1021/ma00082a010

    Article  CAS  Google Scholar 

  44. Tamate R, Hashimoto K, Horii T, Hirasawa M, Li X, Shibayama M, et al. Self-healing micellar ion gels based on multiple hydrogen bonding. Adv Mater. 2018;30:1802792 https://doi.org/10.1002/adma.201802792

    Article  CAS  Google Scholar 

  45. Tamate R, Hashimoto K, Li X, Shibayama M, Watanabe M. Effect of ionic liquid structure on viscoelastic behavior of hydrogen-bonded micellar ion gels. Polymer. 2019;178:121694 https://doi.org/10.1016/j.polymer.2019.121694

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Professor Masayoshi Watanabe (Yokohama National University) and the members of his research group for their considerable support and contributions to this work. The author is also sincerely grateful to all his colleagues for their collaboration and encouragement. This work was financially supported by a Grant-in-Aid for Scientific Research (20K15349) from MEXT, Japan. The author was also partially supported by the Shorai Foundation for Science and Technology and the Iketani Science and Technology Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Tamate.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamate, R. Healable soft materials based on ionic liquids and block copolymer self-assembly. Polym J 53, 789–798 (2021). https://doi.org/10.1038/s41428-021-00476-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00476-0

Search

Quick links