Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mechanical properties of cold-drawn films of ultrahigh-molecular-weight poly(3-hydroxybutyrate-co-3-hydroxyvalerate) produced by Haloferax mediterranei

Abstract

We investigated the biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) produced by Haloferax mediterranei NBRC14739T from glucose. When H. mediterranei grew on 5 g/L glucose in flask culture, 43.7 wt% PHBV with 12 mol% 3-hydroxyvalerate (3HV) accumulated intracellularly. Size-exclusion chromatography revealed that this polymer had a weight-average molecular weight (Mw) and polydispersity (Mw/Mn) of 4.7 × 106 g/mol and 1.7, respectively. Increasing the glucose concentration in the flask cultures slightly promoted cell growth and increased the PHBV content but had less effect on molecular weight. Scale-up cultivation in a 5-L jar yielded 4.0 g/L PHBV from 20 g/L glucose with a Mw of up to 5.0 × 106 g/mol. These results showed that H. mediterranei can produce ultrahigh-molecular-weight (UHMW) PHBV from glucose. UHMW-PHBV (7 mol% 3HV, Mw = 4.4 × 106 g/mol) was used to prepare cold-drawn films, the mechanical properties of which were characterized. The films were produced by tenfold cold drawing, followed by annealing at 100 °C, and had a tensile strength and Young’s modulus of 258.7 MPa and 0.90 GPa, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sudesh K, Abe H, Doi Y. Synthesis, structure, and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci. 2000;25:1503–55.

    Article  CAS  Google Scholar 

  2. Jendroseek D, Pfeiffer D. New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol. 2014;16:2357–73.

    Article  Google Scholar 

  3. Sperling S, Knupffer E, Behnsen H, Mudersbach M, Krieg H, Springer S, et al. Bio-based plastics—a review of environmental, social and economic impact assessments. J Clean Prod. 2018;185:476–91.

    Article  Google Scholar 

  4. Ng EL, Lwanga EH, Eldridge SM, Johnston P, Hu HW, Gessen V, et al. An overview of microplastic and nanoplastic pollution in agroecosystems. Sci Total Environ. 2018;627:1377–88.

    Article  CAS  Google Scholar 

  5. Kusaka S, Iwata T, Doi Y. Microbial synthesis and physical properties of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate]. J Macromol Sci Pure Appl Chem A. 1998;35:319–35.

    Article  Google Scholar 

  6. Kusaka S, Abe H, Lee SY, Doi Y. Molecular mass of poly[(R)-3-hydroxybutyric acid] produced in a recombinant Escherichia coli. Appl Microbiol Biotechnol. 1997;47:140–3.

    Article  CAS  Google Scholar 

  7. Sim SJ, Snell KD, Hogan SA, Stubbe J, Rah C, Siskey AJ. PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nat Biotechnol. 1997;15:63–7.

    Article  CAS  Google Scholar 

  8. Kahar P, Agus J, Kikkawa Y, Taguchi K, Doi Y, Tsuge T. Effective production and kinetic characterization of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] in recombinant Escherichia coli. Polym Degrad Stab. 2005;87:161–9.

    Article  CAS  Google Scholar 

  9. Iwata T. Strong fibers and films of microbial polyesters. Macromol Biosci. 2005;5:689–701.

    Article  CAS  Google Scholar 

  10. Aoyagi Y, Doi Y, Iwata T. Mechanical properties and highly ordered structure of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] films: effects of annealing and two-step drawing. Polym Degrad Stab. 2003;79:209–16.

    Article  CAS  Google Scholar 

  11. Hiroe A, Tsuge K, Nomura CT, Itaya M, Tsuge T. Rearrangement of gene order in the phaCAB operon leads to effective production of ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] in genetically engineered Escherichia coli. Appl Environ Microbiol. 2012;78:3177–84.

    Article  CAS  Google Scholar 

  12. Agus J, Kahar P, Abe H, Doi Y, Tsuge T. Molecular weight characterization of poly[(R)-3-hydroxybutyrate] synthesized by genetically engineered strains of Escherichia coli. Polym Degrad Stab. 2006;91:1138–46.

    Article  CAS  Google Scholar 

  13. Castillo T, Flores C, Segura D, Espin G, Sanguino J, Cabrera E, et al. Production of polyhydroxybutyrate (PHB) of high and ultra-high molecular weight by Azotobacter vinelandii in batch and fed-batch cultures. J Chem Technol Biotechnol. 2017;92:1809–16.

    Article  CAS  Google Scholar 

  14. Arikawa H, Sato S, Fujiki T, Matsumoto K. A study on the relation between poly(3-hydroxybutyrtae) depolymerases of oligomer hydrolases and molecular weight of polyhydroxyalkanoates accumulating in Cupriavidus necator H16. J Biotechnol. 2016;227:94–102.

    Article  CAS  Google Scholar 

  15. Tsuge T, Watanabe S, Shimada D, Abe H, Doi Y, Taguchi S. Combination of N149S and D171G mutations in Aeromonas caviae polyhydroxyalkanoate synthase and impact on polyhydroxyalkanoate biosynthesis. FEMS Micobiol Lett. 2007;277:216–22.

    Article  Google Scholar 

  16. Rodorigez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon sources. J Gen Microbiol. 1980;119:535–8.

    Google Scholar 

  17. Fernandez-Castillo R, Rodorigez-Valera F, Gonzalez-Ramos J, Ruiz-Berraquero F. Accumulation of poly(β-hydroxybutyrate) by halobacteria. Appl Environ Microbiol. 1986;51:214–6.

    Article  CAS  Google Scholar 

  18. Rodrigeuez-Valera F, Lillo JAG. Halobacteria as producers of polyhydroxyalkanoates. FEMS Microbiol Rev. 1992;103:181–6.

    Article  Google Scholar 

  19. Lillo JG, Rodorigez-Valera F. Effects of culture conditions on poly(β-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol. 1990;56:2517–21.

    Article  Google Scholar 

  20. Lu Q, Han J, Zhou L, Zhou J, Xiang H. Genetic and biochemical characterization of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthase in Haloferax mediterranei. J Bacteriol. 2008;190:4173–80.

    Article  CAS  Google Scholar 

  21. Han J, Zhang F, Hou J, Liu X, Li M, Liu H, et al. Complete genome sequence of the metabolically versatile halophilic archaeon Haloferax mediterranei, a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) producer. J Bacteriol. 2012;194:4463–4.

    Article  CAS  Google Scholar 

  22. Han J, Hou J, Zhang F, AiG LiM, Cai S, Liu H, et al. Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei. Appl Environ Microbiol. 2013;79:2922–31.

    Article  CAS  Google Scholar 

  23. Ferre-Guell A, Winterburn J. Biosynthesis and characterization of polyhydroxyalkanoates with controlled composition and microstructure. Biomacromolecules. 2018;19:996–1005.

    Article  CAS  Google Scholar 

  24. Fukui T, Doi Y. Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol. 1998;179:4821–30.

    Article  Google Scholar 

  25. Kato M, Bao HJ, Kang CJ, Fukui T, Doi Y. Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61-3 from sugars. Appl Microbiol Biotechnol. 1996;45:363–70.

    Article  CAS  Google Scholar 

  26. Iwata T, Tsunoda K, Aoyagi Y, Kusaka S, Yonezawa N, Doi Y. Mechanical properties of uniaxially cold-drawn films of poly([R]-3-hydroxybutyrate). Polym Degrad Stab. 2003;79:217–24.

    Article  CAS  Google Scholar 

  27. Han J, Wu LP, Hou J, Zhao D, Xiang H. Biosynthesis, characterization, and hemostasis potential of tailor-made poly(3-hydroxybutyrate-co-3-hydroxyvalerate) produced by Haloferax mediterrnaei. Biomacromolecules. 2015;16:578–88.

    Article  CAS  Google Scholar 

  28. Koller M, Hesse P, Bona R, Kutschera C, Atlić A, Braunegg G. Potential of various archae- and eubacterial strains as industrial polyhydroxyalkanote producers form whey. Macromol Biosci. 2007;7:218–26.

    Article  CAS  Google Scholar 

  29. Don TM, Chen CW, Chan TH. Preparation and characterization of poly(hydroxyalkanoate) from the fermentation of Haloferax mediterranei. J Biomater Sci Polym Ed. 2006;17:1425–38.

    Article  CAS  Google Scholar 

  30. Tsuge T. Fundamental factors determining the molecular weight of polyhydroxyalkanoate during biosynthesis. Polym J. 2016;48:1051–7.

    Article  CAS  Google Scholar 

  31. Han J, Li M, Hou J, Wu L, Zhou J, Xiang H. Comparison of four phaC genes from Haloferax mediterranei and their function in different PHBV copolymer biosynthesis in Haloarcula hispanica. Saline Syst. 2010;6:9.

    Article  Google Scholar 

  32. Avella M, La Rota G, Martuscelli E, Raimo M. Poly(3-ydroxyburytae-co-3-hydroxyvalerate) and wheat straw fiber composites: thermal, mechanical properties and biodegradation behavior. J Mater Sci. 2000;35:829–36.

    Article  CAS  Google Scholar 

  33. Iwata T, Doi Y. Mechanical properties of uniaxially cold-drawn films of poly[(R)-3-hydroxybutyrate] and its copolymers. Macromol Symp. 2005;224:11–9.

    Article  CAS  Google Scholar 

  34. Aoyagi Y, Yamashita K, Doi Y. Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polym Degrad Stab. 2002;76:53–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate technical assistance from Ms. Hiroko Shinozaki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Sato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ino, K., Sato, S., Ushimaru, K. et al. Mechanical properties of cold-drawn films of ultrahigh-molecular-weight poly(3-hydroxybutyrate-co-3-hydroxyvalerate) produced by Haloferax mediterranei. Polym J 52, 1299–1306 (2020). https://doi.org/10.1038/s41428-020-0379-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0379-9

This article is cited by

Search

Quick links