Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Film sensor of a ligand-functionalized cellulose nanofiber for the selective detection of copper and cesium ions

Abstract

A fluorescence sensor film for metal ion detection was prepared from a 2,2,6,6-tetramethyl-1-piperidinyloxy radical-oxidized cellulose nanofiber (TOCNF), which was chemically immobilized the metal ion selective ligand, namely, 3,5-bis(((2-hydroxynaphthalen-1-yl)methylene)amino)benzoic acid. The ligand in the TOCNF/ligand films exhibited fluorescence at a 310 nm excitation wavelength and at an ~410 nm emission wavelength. Then, the sensing efficiency and limits were evaluated from the fluorescence of the metal ion-bound ligand. The Stern–Volmer plot of the fluorescence emission intensity of the films increased with increasing of Cu2+ or Cs+ concentration. Accordingly, the sensing of metal ions was more effective on TOCNF with a greater amount of ligand, the sensing of Cu2+ was superior to that of Cs+, and the detection range of the TOCNF/ligand film was wider for Cu2+ than for Cs+. Thus, although the sensitivity of this sensor is lower than the electrochemical detection previously reported, the noticeable potential of the current sensing system is that it is a film type to be easily removable from the sensing water and there is no remaining sensing residue in the water.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

References

  1. Mon M, Bruno R, Ferrando-Soria J, Armentano D, Pardo E. Metal-organic framework technologies for water remediation: towards a sustainable ecosystem. J Mater Chem A. 2018;6:4912–47.

    CAS  Google Scholar 

  2. Howarth AJ, Liu Y, Hupp JT, Farha OK. Metal-organic frameworks for applications in remediation of oxyanion/cation-contaminated water. CrystEngComm. 2015;17:7245–53.

    CAS  Google Scholar 

  3. Awual MR, Ismael M, Khaleque MA, Yaita T. Ultra-trace copper(II) detection and removal from wastewater using novel meso-adsorbent. J Ind Eng Chem. 2014;20:2332–40.

    CAS  Google Scholar 

  4. Kim MS, Lee SY, Jung JM, Kim C. A new Schiff-base chemosensor for selective detection of Cu2+ and Co2+ and its copper complex for colorimetric sensing of S2− in aqueous solution. Photochem Photobio Sci. 2017;16:1677–89.

    CAS  Google Scholar 

  5. Awual MR. New type mesoporous conjugate material for selective optical copper (II) ions monitoring & removal from polluted waters. Chem Eng J. 2017;307:85–94.

    CAS  Google Scholar 

  6. ReddyPrasad P, Imae T. Selective detection of copper ion in water by tetradentate ligand sensor. J Taiwan Inst Chem E. 2017;72:194–9.

    CAS  Google Scholar 

  7. Awual MR, Hasan MM. Colorimetric detection and removal of copper (II) ions from wastewater samples using tailor-made composite adsorbent. Sens Actuators B Chem. 2015;206:692–700.

    CAS  Google Scholar 

  8. Yang H, Luo M, Luo L, Wang H, Hu D, Lin J, et al. Highly selective and rapid uptake of radionuclide cesium based on robust zeolitic chalcogenide via stepwise ion-exchange strategy. Chem Mater. 2016;28:8774–80.

    CAS  Google Scholar 

  9. Wang J, Zhuang S. Removal of cesium ions from aqueous solutions using various separation technologies. Rev Environ Sci Biotechnol. 2019;18:231–69.

    CAS  Google Scholar 

  10. Ma F, Li Z, Zhao H, Geng Y, Zhou W, Li Q, et al. Potential application of graphene oxide membranes for removal of Cs(I) and Sr(II) from high level-liquid waste. Sep Purif Technol. 2017;188:523–9.

    CAS  Google Scholar 

  11. Yoon JY, Zhang H, Kim YK, Harbottle D, Lee JW. A high-strength polyvinyl alcohol hydrogel membrane crosslinked by sulfosuccinic acid for strontium removal via filtration. J Environ Chem Eng. 2019;7:102824.

    CAS  Google Scholar 

  12. Kim Y, Eom HH, Kim YK, Harbottle D, Lee JW. Effective removal of cesium from wastewater via adsorptive filtration with potassium copper hexacyanoferrate-immobilized and polyethyleneimine-grafted graphene oxide. Chemosphere. 2020;250:126262.

    CAS  PubMed  Google Scholar 

  13. Liu X, Chen GR, Lee DJ, Kawamoto T, Tanaka H, Chen ML, et al. Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents. Bioresour Technol. 2014;160:142–9.

    CAS  PubMed  Google Scholar 

  14. Jia F, Wang J. Separation of cesium ions from aqueous solution by vacuum membrane distillation process. Prog Nucl Energ. 2017;98:293–300.

    CAS  Google Scholar 

  15. Qian J, Han X, Yang S, Kuang L, Hua D. A strategy for effective cesium adsorption from aqueous solution by polypentacyanoferrate-grafted polypropylene fabric under γ-ray irradiation. J Taiwan Inst Chem Eng. 2018;89:162–8.

    CAS  Google Scholar 

  16. Guria UN, Mahapatra AK, Ghosh AK, Bindal RC. Fluorescent chemosensor for lethal cesium detection using thin film membrane. Sep Sci Technol. 2019;54:1687–96.

    CAS  Google Scholar 

  17. Arida HAM, Aglan RF, El-Reefy SA. A new cesium ion selective graphite rod electrode based on Cs-Molybdophosphate. Anal Lett. 2004;37:21–33.

    CAS  Google Scholar 

  18. Greda K, Jamroz P, Pohl P. The improvement of the analytical performance of direct current atmospheric pressure glow discharge generated in contact with the small-sized liquid cathode after the addition of non-ionic surfactants to electrolyte solutions. Talanta. 2013;108:74–82.

    CAS  PubMed  Google Scholar 

  19. Karadas C, Turhan O, Kara D. Synthesis and application of a new functionalized resin for use in an on-line, solid phase extraction system for the determination of trace elements in waters and reference cereal materials by flame atomic absorption spectrometry. Food Chem. 2013;141:655–61.

    CAS  PubMed  Google Scholar 

  20. Radu A, Peper S, Gonczy C, Runde W, Diamond D. Trace-level determination of Cs+ using membrane-based ion-selective electrodes. Electroanal. 2006;18:1379–88.

    CAS  Google Scholar 

  21. Cho ES, Kim J, Tejerina B, Hermans TM, Jiang H, Nakanishi H, et al. Ultrasensitive detection of toxic cations through changes in the tunnelling current across films of striped nanoparticles. Nat Mater. 2012;11:975–85.

    Google Scholar 

  22. Chrastny V, Komarek M. Copper determination using ICP-MS with hexapole collision cell. Chem Pap. 2009;63:512–9.

    CAS  Google Scholar 

  23. Tofalvi R, Horvath K, Hajos P. High performance ion chromatography of transition metal chelate complexes and aminopolycarboxylate ligands. J Chromatogr A. 2013;1272:26–32.

    CAS  PubMed  Google Scholar 

  24. Jung JY, Kang M, Chun J, Lee J, Kim J, Kim J, et al. A thiazolothiazole based Cu2+ selective colorimetric and fluorescent sensor via unique radical formation. Chem Commun. 2013;49:176–8.

    CAS  Google Scholar 

  25. Radaram B, Mako T, Levine M. Sensitive and selective detection of cesium via fluorescence quenching. Dalton Trans. 2013;42:16276–8.

    CAS  PubMed  Google Scholar 

  26. Zuang J, Zhang L, Lu W, Shen D, Zhu R, Pan D. Determination of trace copper in water samples by anodic stripping voltammetry at gold microelectrode. Int J Electrochem Sci. 2011;6:4690–9.

    Google Scholar 

  27. Shah KJ, Imae T. Selective gas capture ability of gas-adsorbent-incorporated cellulose nanofiber films. Biomacromolecules. 2016;17:1653–61.

    CAS  PubMed  Google Scholar 

  28. Shah KJ, Imae T. Photoinduced enzymatic conversion of CO2 gas to solar fuel on functional cellulose nanofiber films. J Mater Chem A. 2017;5:9691–701.

    CAS  Google Scholar 

  29. Ujihara M, Hsu MH, Liou JY, Imae T. Hybridization of cellulose nanofiber with amine-polymers and its ability on sick house syndrome gas decomposition. J Taiwan Inst Chem Eng. 2018;92:106–11.

    CAS  Google Scholar 

  30. Ramaraju B, Imae T. Renewable catalyst with Cu nanoparticles embedded into cellulose nano-fiber film. RSC Adv. 2013;3:16279–82.

    Google Scholar 

  31. Ramaraju B, Imae T, Destaye AG. Ag nanoparticle-immobilized cellulose nanofibril films for environmental conservation. Appl Catal A-Gen. 2015;492:184–9.

    CAS  Google Scholar 

  32. Prasannan A, Imae T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res. 2013;52:15673–8.

    CAS  Google Scholar 

  33. Kim KB, Kim H, Song EJ, Kim S, Noh I, Kim C. A cap-type Schiff base acting as a fluorescence sensor for zinc (II) and a colorimetric sensor for iron(II), copper(II), and zinc(II) in aqueous media. Dalton Trans. 2013;42:16569–77.

    CAS  PubMed  Google Scholar 

  34. Lee JJ, Choi YW, You GR, Lee SY, Kim C. A phthalazine-based two-in-one chromogenic receptor for detecting Co2+ and Cu2+ in an aqueous environment. Dalton Trans. 2015;44:13305–14.

    CAS  PubMed  Google Scholar 

  35. Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale. 2011;3:71–85.

    CAS  PubMed  Google Scholar 

  36. Kumar V, Yang T. Analysis of carboxyl content in oxidized celluloses by solid-state 13C CP/MAS NMR spectroscopy. Int J Pharm. 1999;184:219–26.

    CAS  PubMed  Google Scholar 

  37. Kebede MA, Asiku KS, Imae T, Kawakami M, Furukawa H, Wu CM. Stereolithographic and molding fabrications of hydroxyapatite-polymer gels applicable to bone regeneration materials. J Taiwan Inst Chem Eng. 2018;92:91–6.

    CAS  Google Scholar 

  38. Isogai A. Development of completely dispersed cellulose nanofibers. Proc Jpn Acad Ser B. 2018;94:161–79.

    CAS  Google Scholar 

  39. Kebede MA, Imae T, Sabrina, Wu CM, Cheng KB. Cellulose fibers functionalized by metal nanoparticles stabilized in dendrimer for formaldehyde decomposition and antimicrobial activity. Chem Eng J. 2017;311:340–7.

    CAS  Google Scholar 

  40. Kondo T. The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose. 1997;4:281–92.

    CAS  Google Scholar 

  41. Liu CF, Ren JL, Xu F, Liu JJ, Sun JX, Sun RC. Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J Agric Food Chem. 2006;54:5742–8.

    CAS  PubMed  Google Scholar 

  42. Zare AJ, Ataeinia P. Synthesis and study of complexes of tetradentate Schiff base and bridging ligand of thiocyanate with transition metals of Fe, Cr and Co. Life Sci J. 2012;9:2396–405.

    Google Scholar 

  43. Awual MR, Ismael M, Yaita T, El-Safty SA, Shiwaku H, Okamoto Y, et al. Trace copper(II) ions detection and removal from water using novel ligand modified composite adsorbent. Chem Eng J. 2013;222:67–76.

    CAS  Google Scholar 

  44. Gao Q, Ji L, Wang Q, Yin K, Li J, Chen L. Colorimetric sensor for highly sensitive and selective detection of copper ion. Anal Methods. 2017;9:5094–100.

    CAS  Google Scholar 

  45. Awual MR, Hasan MM, Rahman MM, Asiri AM. Novel composite material for selective copper(II) detection and removal from aqueous media. J Mol Liq. 2019;283:772–80.

    CAS  Google Scholar 

  46. Yang L, Huang N, Huang L, Liu M, Li H, Zhang Y, et al. An electrochemical sensor for highly sensitive detection of copper ions based on a new molecular probe Pi-A decorated on graphene. Anal Methods. 2017;9:618–24.

    Google Scholar 

  47. Aarjane M, Slassi S, Amine A. Novel highly selective and sensitive fluorescent sensor for copper detection based on N-acylhydrazone acridone derivative. J Mol Struct. 2020;1199:126990.

    CAS  Google Scholar 

  48. Qiu S, Wei Y, Tu T, Xiang J, Zhang D, Chen Q, et al. Triazole-stabilized fluorescence sensor for highly selective detection of copper in tea and animal feed. Food Chem. 2020;317:126434.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AR gratefully acknowledges the National Taiwan University of Science and Technology, Taiwan, for financial support from the postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toyoko Imae.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmawati, A., Shih, CF. & Imae, T. Film sensor of a ligand-functionalized cellulose nanofiber for the selective detection of copper and cesium ions. Polym J 52, 1235–1243 (2020). https://doi.org/10.1038/s41428-020-0377-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0377-y

This article is cited by

Search

Quick links