Abstract
In this study, a novel pyrazole–carbodithioate-based chain transfer agent (CTA) featuring an aldehyde group (CTA-CHO) was designed and synthesized for RAFT polymerization. The obtained CTA-CHO was employed for the RAFT polymerization of styrene to afford well-defined polystyrenes bearing an aldehyde at their chain ends with low Ð values (~1.1). In addition, the reactivity of the aldehyde moiety at the end of the chain was precisely evaluated, while the Passerini three-component reaction was successfully performed on the aldehyde group.
Access options
Subscribe to Journal
Get full journal access for 1 year
$299.00
only $24.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.












References
- 1.
Zhu J, Bienaymé H. Multicomponent reactions. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2005.
- 2.
Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA. Multiple-component condensation strategies for combinatorial library synthesis. Acc Chem Res. 1996;29:123–31. https://doi.org/10.1021/ar9502083
- 3.
Dömling A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev. 2006;106:17–89. https://doi.org/10.1021/cr0505728
- 4.
Dömling A, Wang W, Wang K. Chemistry and biology of multicomponent reactions. Chem Rev. 2012;112:3083–135. https://doi.org/10.1021/cr100233r
- 5.
Rotstein BH, Zaretsky S, Rai V, Yudin AK. Small heterocycles in multicomponent reactions. Chem Rev. 2014;114:8323–59. https://doi.org/10.1021/cr400615v
- 6.
Touré BB, Hall DG. Natural product synthesis using multicomponent reaction strategies. Chem Rev. 2009;109:4439–86. https://doi.org/10.1021/cr800296p
- 7.
Wessjohann LA, Rivera DG, Vercillo OE. Multiple multicomponent macrocyclizations (MiBs): a strategic development toward macrocycle diversity. Chem Rev. 2009;109:796–814. https://doi.org/10.1021/cr8003407
- 8.
Kreye O, Türünç O, Sehlinger A, Rackwitz J, Meier MAR. Structurally diverse polyamides obtained from monomers derived via the Ugi multicomponent reaction. Chem Eur J. 2012;18:5767–76. https://doi.org/10.1002/chem.201103341
- 9.
Kreye O, Tóth T, Meier MAR. Introducing multicomponent reactions to polymer science: passerini reactions of renewable monomers. J Am Chem Soc. 2011;133:1790–2. https://doi.org/10.1021/ja1113003
- 10.
Zhu C, Yang B, Zhao Y, Fu C, Tao L, Wei Y. A new insight into the Biginelli reaction: the dawn of multicomponent click chemistry? Polym Chem. 2013;4:5395–5400. https://doi.org/10.1039/C3PY00553D
- 11.
Zhang Q, Zhang Y, Zhao Y, Yang B, Fu C, Wei Y, et al. Multicomponent Polymerization System Combining Hantzsch Reaction and Reversible Addition–Fragmentation Chain Transfer to Efficiently Synthesize Well-Defined Poly(1,4-dihydropyridine)s. ACS Macro Lett. 2015;4:128–32. https://doi.org/10.1021/mz500734c
- 12.
Kakuchi R, Theato P. Three-Component Reactions for Post-Polymerization Modifications. ACS Macro Lett. 2013;2:419–22. https://doi.org/10.1021/mz400144q
- 13.
Lee I-H, Kim H, Choi T-L. Cu-Catalyzed Multicomponent Polymerization To Synthesize a Library of Poly(N-sulfonylamidines). J Am Chem Soc. 2013;135:3760–3. https://doi.org/10.1021/ja312592e
- 14.
Deng XX, Cui Y, Du FS, Li ZC. Functional highly branched polymers from multicomponent polymerization (MCP) based on the ABC type Passerini reaction. Polym Chem. 2014;5:3316–20. https://doi.org/10.1039/c3py01705b
- 15.
Jee J-A, Spagnuolo LA, Rudick JG. Convergent synthesis of dendrimers via the passerini three-component reaction. Org Lett. 2012;14:3292–5. https://doi.org/10.1021/ol301263v
- 16.
Li L, Kan X-W, Deng X-X, Song C-C, Du F-S, Li Z-C. Simultaneous dual end-functionalization of peg via the passerini three-component reaction for the synthesis of ABC miktoarm terpolymers. J Polym Sci Part A. 2013;51:865–73. https://doi.org/10.1002/pola.26443
- 17.
Deng X-X, Li L, Li Z-L, Lv A, Du F-S, Li Z-C. Sequence Regulated Poly(ester-amide)s Based on Passerini Reaction. ACS Macro Lett. 2012;1:1300–3. https://doi.org/10.1021/mz300456p
- 18.
Yang B, Zhao Y, Fu CK, Zhu CY, Zhang YL, Wang SQ, et al. Introducing the Ugi reaction into polymer chemistry as a green click reaction to prepare middle-functional block copolymers. Polym Chem. 2014;5:2704–8. https://doi.org/10.1039/c4py00001c
- 19.
Kakuchi R, Theato P. Efficient multicomponent postpolymerization modification based on kabachnik-fields reaction. ACS Macro Lett. 2014;3:329–32. https://doi.org/10.1021/mz500139c
- 20.
Moldenhauer F, Kakuchi R, Theato P. Synthesis of Polymers via Kabachnik-Fields Polycondensation. ACS Macro Lett. 2016;5:20–23. https://doi.org/10.1021/acsmacrolett.5b00720
- 21.
Kakuchi R, Yoshida S, Sasaki T, Kanoh S, Maeda K. Multi-component post-polymerization modification reactions of polymers featuring lignin-model compounds. Polym Chem. 2018;9:2109–15. https://doi.org/10.1039/C7PY01923H
- 22.
Zhang Y, Zhao Y, Yang B, Zhu C, Wei Y, Tao L. ‘One pot’ synthesis of well-defined poly(aminophosphonate)s: time for the Kabachnik–Fields reaction on the stage of polymer chemistry. Polym Chem. 2014;5:1857–62. https://doi.org/10.1039/C3PY01486J
- 23.
Zhang Y, Zhao Y, Xia S, Tao L, Wei Y. A Facile Preparation of Mussel-Inspired Poly(dopamine phosphonate-co-PEGMA)s via a One-Pot Multicomponent Polymerization System. Macro Rapid Commun. 2020;41:1900533 https://doi.org/10.1002/marc.201900533
- 24.
Iha RK, Wooley KL, Nyström AM, Burke DJ, Kade MJ, Hawker CJ. Applications of orthogonal click chemistries in the synthesis of functional soft materials. Chem Rev. 2009;109:5620–86. https://doi.org/10.1021/cr900138t
- 25.
Golas PL, Matyjaszewski K. Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chem Soc Rev. 2010;39:1338–54. https://doi.org/10.1039/b901978m
- 26.
Pound G, McKenzie JM, Lange RF, Klumperman B. Polymer-protein conjugates from omega-aldehyde endfunctional poly(N-vinylpyrrolidone) synthesised via xanthate-mediated living radical polymerisation. Chem Commun. 2008;27:3193–5. https://doi.org/10.1039/b803952f
- 27.
Moad G, Rizzardo E, Thang SH. Living Radical Polymerization by the RAFT Process – A Third Update. Aust J Chem. 2012, 65 (8). https://doi.org/10.1071/ch12295.
- 28.
Moad G. A Critical Survey of Dithiocarbamate Reversible Addition‐Fragmentation Chain Transfer (RAFT) Agents in Radical Polymerization. J Polym Sci Part A. 2018;57:216–27. https://doi.org/10.1002/pola.29199
- 29.
Keddie DJ, Moad G, Rizzardo E, Thang SH. RAFT Agent Design and Synthesis. Macromolecules. 2012;45:5321–42. https://doi.org/10.1021/ma300410v
- 30.
Li J, Yang S, Wang L, Wang X, Liu L. Thermoresponsive dynamic covalent polymers with tunable properties. Macromolecules. 2013;46:6832–42. https://doi.org/10.1021/ma400948j
- 31.
Reader PW, Pfukwa R, Jokonya S, Arnott GE, Klumperman B. Synthesis of α,ω-heterotelechelic PVP for bioconjugation, via a one-pot orthogonal end-group modification procedure. Polym Chem. 2016;7:6450–6. https://doi.org/10.1039/C6PY01296E
- 32.
Deng J, Liu X, Ma L, Cheng C, Sun S, Zhao C. Switching biological functionalities of biointerfaces via dynamic covalent bonds. J Mater Chem B. 2016;4:694–703. https://doi.org/10.1039/C5TB02072G
- 33.
Jackson AW, Fulton DA. Dynamic Covalent Diblock Copolymers Prepared from RAFT Generated Aldehyde and Alkoxyamine End-Functionalized Polymers. Macromolecules. 2010;43:1069–75. https://doi.org/10.1021/ma902291a
- 34.
Gardiner J, Martinez-Botella I, Tsanaktsidis J, Moad G. Dithiocarbamate RAFT agents with broad applicability – the 3,5-dimethyl-1H-pyrazole-1-carbodithioates. Polym Chem. 2016;7:481–92. https://doi.org/10.1039/c5py01382h
- 35.
Gardiner J, Martinez-Botella I, Kohl TM, Krstina J, Moad G, Tyrell JH, et al. 4-Halogeno-3,5-dimethyl-1H-pyrazole-1-carbodithioates: versatile reversible addition fragmentation chain transfer agents with broad applicability. Polym Int. 2017;66:1438–47. https://doi.org/10.1002/pi.5423
- 36.
Banerjee S, Guerre M, Améduri B, Ladmiral V. Syntheses of 2-(trifluoromethyl)acrylate-containing block copolymers via RAFT polymerization using a universal chain transfer agent. Polym Chem. 2018;9:3511–21. https://doi.org/10.1039/C8PY00655E
- 37.
Willcock H, O’Reilly RK. End group removal and modification of RAFT polymers. Polym Chem. 2010;1:149–57. https://doi.org/10.1039/B9PY00340A
- 38.
Uchiyama M, Satoh K, Kamigaito M. Cationic RAFT Polymerization Using ppm Concentrations of Organic Acid. Angew Chem Int Ed. 2015;54:1924–8. https://doi.org/10.1002/anie.201410858
- 39.
Ramozzi R, Morokuma K. Revisiting the passerini reaction mechanism: existence of the nitrilium, organocatalysis of its formation, and solvent effect. J Org Chem. 2015;80:5652–7. https://doi.org/10.1021/acs.joc.5b00594
- 40.
Maeda S, Komagawa S, Uchiyama M, Morokuma K. Finding reaction pathways for multicomponent reactions: the passerini reaction is a four-component reaction. Angew Chem Int Ed. 2011;50:644–9. https://doi.org/10.1002/anie.201005336
- 41.
Sarri P, Venturi F, Cuda F, Roelens S. Binding of acetylcholine and tetramethylammonium to flexible cyclophane receptors: improving on binding ability by optimizing host’s geometry. J Org Chem. 2004;69:3654–61. https://doi.org/10.1021/jo049899j
- 42.
Loim NM, Kelbyscheva ES. Synthesis of dendrimers with terminal formyl groups. Russ Chem Bull 2004;53:2080–5. https://doi.org/10.1007/s11172-005-0076-z
Acknowledgements
RK gratefully acknowledges the Leading Initiative for Excellent Young Researchers (LEADER) and a Grant-in-Aid for Scientific Research (C) (no. 19K05578) for financial support.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Kakuchi, R., Okura, Y. The Passerini three-component reaction of aldehyde end-functionalized polymers via RAFT polymerization using chain transfer agents featuring aldehyde. Polym J 52, 1057–1066 (2020). https://doi.org/10.1038/s41428-020-0368-z
Received:
Revised:
Accepted:
Published:
Issue Date:
Further reading
-
Recent Advances in Separation-Based Techniques for Synthetic Polymer Characterization
Analytical Chemistry (2020)