Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Preparation of (2 × 4)-type tetra-PEG ion gels through Cu-free azide–alkyne cycloaddition

Abstract

(2 × 4)-Type tetra-PEG ion gels were prepared through a copper-free azide–alkyne cycloaddition reaction between azide-functionalized tetra-branched poly(ethylene glycol) and electron-deficient alkyne-functionalized tetra(ethylene glycol) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. The thermal, mechanical, and electrochemical properties of the ion gels were characterized. The tensile tests showed that the reaction efficiency of the cross-linking was over 90%. The prepared ion gels exhibited high mechanical toughness and stretchability characteristic of tetra-PEG gels. The electrochemical window of the ion gels was the same as that of the ionic liquid inside the gel. The ionic conductivities of the ion gels with 30 and 50 wt% polymer concentrations were 8.9 and 1.4 × 10−4 S cm−1, respectively (25 °C, anhydrous conditions).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arya A, Sharma AL. Polymer electrolytes for lithium ion batteries: a critical study. Ionics. 2017;23:497–540.

    CAS  Google Scholar 

  2. Mindemark J, Lacey MJ, Bowden T, Brandell D. Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci. 2018;81:114–43.

    CAS  Google Scholar 

  3. Cheng XL, Pan J, Zhao Y, Liao M, Peng HS. Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater. 2018;8:1702184.

    Google Scholar 

  4. Kusoglu A, Weber AZ. New insights into perfluorinated sulfonic-acid ionomers. Chem Rev. 2017;117:987–1104.

    PubMed  CAS  Google Scholar 

  5. Shin DW, Guiver MD, Lee YM. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability. Chem Rev. 2017;117:4759–805.

    PubMed  CAS  Google Scholar 

  6. Li J, Qiao JL, Lian K. Hydroxide ion conducting polymer electrolytes and their applications in solid supercapacitors: a review. Energy Storage Mater. 2020;24:6–21.

    Google Scholar 

  7. Wang ZF, Zhu MS, Pei ZX, Xue Q, Li HF, Huang Y, Zhi CY. Polymers for supercapacitors: boosting the development of the flexible and wearable energy storage. Mater Sci Eng R Rep. 2020;139:100520.

    Google Scholar 

  8. Hou WJ, Xiao YM, Han GY, Lin JY. The applications of polymers in solar cells: a review. Polymers. 2019;11:143.

    PubMed Central  Google Scholar 

  9. Iftikhar H, Sonai GG, Hashmi SG, Nogueira AF, Lund PD. Progress on electrolytes development in dye-sensitized solar cells. Materials. 2019;12:1998.

    PubMed Central  CAS  Google Scholar 

  10. Alesanco Y, Vinuales A, Rodriguez J, Tena-Zaera R. All-in-one gel-based electrochromic devices: strengths and recent developments. Materials. 2018;11:414.

    PubMed Central  Google Scholar 

  11. Susan MA, Kaneko T, Noda A, Watanabe M. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J Am Chem Soc. 2005;127:4976–83.

    PubMed  CAS  Google Scholar 

  12. Le Bideau J, Viau L, Vioux A. Ionogels, ionic liquid based hybrid materials. Chem Soc Rev. 2011;40:907–25.

    PubMed  Google Scholar 

  13. Marr PC, Marr AC. Ionic liquid gel materials: applications in green and sustainable chemistry. Green Chem. 2016;18:105–28.

    Google Scholar 

  14. Rana HH, Park JH, Gund GS, Park HS. Highly conducting, extremely durable, phosphorylated cellulose-based ionogels for renewable flexible supercapacitors. Energy Storage Mater. 2020;25:70–5.

    Google Scholar 

  15. Watanabe M, Thomas ML, Zhang SG, Ueno K, Yasuda T, Dokko K. Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev. 2017;117:7190–239.

    PubMed  CAS  Google Scholar 

  16. Yang QW, Zhang ZQ, Sun XG, Hu YS, Xing HB, Dai S. Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev. 2018;47:2020–64.

    PubMed  CAS  Google Scholar 

  17. Liu H, Yu HJ. Ionic liquids for electrochemical energy storage devices applications. J Mater Sci Technol. 2019;35:674–86.

    Google Scholar 

  18. Okumura Y, Ito K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater. 2001;13:485–7.

    CAS  Google Scholar 

  19. Ito K. Slide-ring materials using cyclodextrin. Chem Pharm Bull. 2017;65:326–9.

    PubMed  CAS  Google Scholar 

  20. Haraguchi K, Takehisa T. Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater. 2002;14:1120–4.

    CAS  Google Scholar 

  21. Haraguchi K. Soft nanohybrid materials consisting of polymer-clay networks. Adv Polym Sci. 2015;267:187–248.

    CAS  Google Scholar 

  22. Gong JP, Katsuyama Y, Kurokawa T, Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003;15:1155–8.

    CAS  Google Scholar 

  23. Gong JP. Why are double network hydrogels so tough? Soft Matter. 2010;6:2583–90.

    CAS  Google Scholar 

  24. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, Sasaki N, Shibayama M, Chung UI. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules. 2008;41:5379–84.

    CAS  Google Scholar 

  25. Shibayama M, Li X, Sakai T. Precision polymer network science with tetra-PEG gels a decade history and future. Colloid Polym Sci. 2019;297:1–12.

    CAS  Google Scholar 

  26. Watanabe T, Takahashi R, Ono T. Preparation of tough, thermally stable, and water-resistant double-network ion gels consisting of silica nanoparticles/poly(ionic liquid)s through photopolymerisation of an ionic monomer and subsequent solvent removal. Soft Matter. 2020;16:1572–81.

    PubMed  CAS  Google Scholar 

  27. Fujii K, Asai H, Ueki T, Sakai T, Imaizumi S, Chung UI, Watanabe M, Shibayama M. High-performance ion gel with tetra-PEG network. Soft Matter. 2012;8:1756–9.

    CAS  Google Scholar 

  28. Hashimoto K, Fujii K, Nishi K, Sakai T, Shibayama M. Nearly ideal polymer network ion gel prepared in pH-buffering ionic liquid. Macromolecules. 2016;49:344–52.

    CAS  Google Scholar 

  29. Ishii S, Kokubo H, Hashimoto K, Imaizumi S, Watanabe M. Tetra-PEG network containing ionic liquid synthesized via Michael addition reaction and its application to polymer actuator. Macromolecules. 2017;50:2906–15.

    CAS  Google Scholar 

  30. Yoshitake M, Kamiyama Y, Nishi K, Yoshimoto N, Morita M, Sakai T, Fujii K. Defect-free network formation and swelling behavior in ionic liquid-based electrolytes of tetra-arm polymers synthesized using a Michael addition reaction. PCCP. 2017;19:29984–90.

    PubMed  CAS  Google Scholar 

  31. Yoshitake M, Han J, Sakai T, Morita M, Fujii K. TetraPEG network formation via a Michael addition reaction in an ionic liquid: Application to polymer gel electrolyte for electric double-layer capacitors. Chem Lett. 2019;48:704–7.

    CAS  Google Scholar 

  32. Qin AJ, Tang L, Lam JWY, Jim CKW, Yu Y, Zhao H, Sun JZ, Tang BZ. Metal-free click polymerization: Synthesis and photonic properties of poly(aroyltriazole)s. Adv Funct Mater. 2009;19:1891–900.

    CAS  Google Scholar 

  33. Katritzky AR, Sakhuja R, Huang LC, Gyanda R, Wang L, Jackson DC, Ciaramitaro DA, Bedford CD, Duran RS. Effect of filler loading on the mechanical properties of cross linked 1,2,3-triazole polymers. J Appl Polym Sci. 2010;118:121–7.

    CAS  Google Scholar 

  34. Gorman IE, Willer RL, Kemp LK, Storey RF. Development of a triazole-cure resin system for composites: Evaluation of alkyne curatives. Polymer. 2012;53:2548–58.

    CAS  Google Scholar 

  35. Ikeda T. Copper-free synthesis of glycidyl triazolyl polymers. Macromol Chem Phys. 2018;219:1800147.

    Google Scholar 

  36. Tsuji Y, Li X, Shibayama M. Evaluation of mesh size in model polymer networks consisting of tetra-arm and linear poly(ethylene glycol)s. Gels. 2018;4:50.

    PubMed Central  Google Scholar 

  37. Vrandecic NS, Erceg M, Jakic M, Klaric I. Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight. Thermochim Acta. 2010;498:71–80.

    CAS  Google Scholar 

  38. Vyas S, Dreyer C, Slingsby J, Bicknase D, Porter JM, Maupin CM. Electronic structure and spectroscopic analysis of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ion pair. J Phys Chem A. 2014;118:6873–82.

    PubMed  CAS  Google Scholar 

  39. Galinski M, Lewandowski A, Stepniak I. Ionic liquids as electrolytes. Electrochim Acta. 2006;51:5567–80.

    CAS  Google Scholar 

  40. Zardalidis G, Mars J, Allgaier J, Mezger M, Richter D, Floudas G. Influence of chain topology on polymer crystallization: poly(ethylene oxide) (PEO) rings vs. linear chains. Soft Matter. 2016;12:8124–34.

    PubMed  CAS  Google Scholar 

  41. Kusuma VA, Macala MK, Baker JS, Hopkinson D. Cross-linked poly(ethylene oxide) ion gels containing functionalized imidazolium ionic liquids as carbon dioxide separation membranes. Ind Eng Chem Res. 2018;57:11658–67.

    CAS  Google Scholar 

  42. Shioiri R, Kokubo H, Horii T, Kobayashi Y, Hashimoto K, Ueno K, Watanabe M. Polymer electrolytes based on a homogeneous poly(ethylene glycol) network and their application to polymer actuators. Electrochim Acta. 2019;298:866–73.

    CAS  Google Scholar 

  43. Flory PJ. Molecular theory of rubber elasticity. Polym J. 1985;17:1–12.

    CAS  Google Scholar 

  44. Akagi Y, Katashima T, Katsumoto Y, Fujii K, Matsunaga T, Chung UI, Shibayama M, Sakai T. Examination of the theories of rubber elasticity using an ideal polymer network. Macromolecules. 2011;44:5817–21.

    CAS  Google Scholar 

  45. Barsoukov E, Macdonald JR. Impedance spectroscopy theory, experiment, and applications. 2nd ed. Hoboken: Wiley; 2005.

    Google Scholar 

  46. Mudraboyina BP, Obadia MM, Allaoua I, Sood R, Serghei A, Drockenmuller E. 1,2,3-Triazolium-based poly(ionic liquid)s with enhanced ion conducting properties obtained through a click chemistry polyaddition strategy. Chem Mater. 2014;26:1720–6.

    CAS  Google Scholar 

  47. Ikeda T, Moriyama S, Kim J. Imidazolium-based poly(ionic liquid)s with poly(ethylene oxide) main chains: effects of spacer and tail structures on ionic conductivity. J Polym Sci, Part A: Polym Chem. 2016;54:2896–906.

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Dr Junko Aimi for assistance with tensile tester operation. This work was financially supported by Grants-in-Aid for Scientific Research C, 18K04762 (JSPS) and M-Cube project (NIMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taichi Ikeda.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, T. Preparation of (2 × 4)-type tetra-PEG ion gels through Cu-free azide–alkyne cycloaddition. Polym J 52, 1129–1135 (2020). https://doi.org/10.1038/s41428-020-0363-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0363-4

This article is cited by

Search

Quick links