Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Well-defined arrangement of π-electronic systems based on precise molecular design

Abstract

This focus review describes several methods for aligning π-electronic systems to achieve various functionalities in both solution and the solid phase. Cyclic oligomers, acting as tethering units, can facilitate precise design of the nanoarchitecture of π-electronic systems. This approach produces three-dimensionally aligned structures of π-electronic systems in diluted solutions, where the intermolecular interactions are partially excluded. In the solid state, charged π-electronic systems exhibit nanoarchitectures based on electrostatic interactions, including the repulsive and attractive forces generated between the identically charged and differently charged species, respectively. These methods for controlling the arrangements of π-electronic systems can produce fascinating molecular systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hunter CA, Sanders JKM. The nature of π-π interactions. J Am Chem Soc. 1990;112:5525–34.

    Article  CAS  Google Scholar 

  2. Meller G, Grasser T, editors. Organic electronics. Berlin: Springer; 2009.

  3. Samori P, Cacialli F, editors. Functional supramolecular architectures. Weinheim: Wiley-VCH; 2011.

  4. Binnemans K. Ionic liquid crystals. Chem Rev. 2005;105:4148–204.

    Article  CAS  PubMed  Google Scholar 

  5. Kato T, Mizoshita N, Kishimoto K. Functional liquid-crystalline assemblies: self-organized soft materials. Angew Chem Int Ed. 2006;45:38–68.

    Article  CAS  Google Scholar 

  6. Faul CF. Ionic self-assembly for functional hierarchical nanostructured materials. Acc Chem Res. 2014;47:3428–38.

    Article  CAS  PubMed  Google Scholar 

  7. Goossens K, Lava K, Bielawski CW, Binnemans K. Ionic liquid crystals: versatile materials. Chem Rev. 2016;116:4643–807.

    Article  CAS  PubMed  Google Scholar 

  8. Ikeda A, Shinkai S. Novel cavity design using Calix[n]arene skeletons: toward molecular recognition and metal binding. Chem Rev. 1997;97:1713–34.

    Article  CAS  PubMed  Google Scholar 

  9. Hippius C, Van Stokkum IHM, Gsänger M, Groeneveld MM, Williams RM, Würthner F. Sequential FRET processes in calix[4]arene-linked orange-red-green perylene bisimide dye zigzag arrays. J Phys Chem C. 2008;112:2476–86.

    Article  CAS  Google Scholar 

  10. Ogoshi T, Yamagishi T, Nakamoto Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem Rev. 2016;116:7937–8002.

    Article  CAS  PubMed  Google Scholar 

  11. Ogoshi T, Umeda K, Yamagishi T, Nakamoto Y. Through-space pi-delocalized Pillar[5]arene. Chem Commun. 2009;4874–6.

  12. Azumaya I, Kagechika H, Yamaguchi K, Shudo K. Facile formation of aromatic cyclic N-methylamides based on cis conformational preference. Tetrahedron Lett. 1996;37:5003–6.

    Article  CAS  Google Scholar 

  13. Azumaya I, Okamoto T, Imabeppu F, Takayanagi H. Simple and convenient synthesis of tertiary benzanilides using dichlorotriphenylphosphorane. Tetrahedron. 2003;59:2325–31.

    Article  CAS  Google Scholar 

  14. Imabeppu F, Katagiri K, Masu H, Kato T, Tominaga M, Therrien B, Takayanagi H, Kaji E, Yamaguchi K, Kagechika H, Azumaya I. Calix[3]amides—bowl-shaped cyclic trimers toward building block for molecular recognition: self-complementary dimeric structure in the crystal. Tetrahedron Lett. 2006;47:413–6.

    Article  CAS  Google Scholar 

  15. Kakuta H, Azumaya I, Masu H, Matsumura M, Yamaguchi K, Kagechika H, Tanatani A. Cyclic-tri(N-methyl-meta-benzamide)s: substituent effects on the bowl-shaped conformation in the crystal and solution states. Tetrahedron. 2010;66:8254–60.

    Article  CAS  Google Scholar 

  16. Takagi K, Sugimoto S, Yamakado R, Nobuke K. Self-assembly of oligothiophene chromophores by m-calix[3]amide scaffold. J Org Chem. 2011;76:2471–8.

    Article  CAS  PubMed  Google Scholar 

  17. Yamakado R, Sugimoto S, Matsuoka S, Suzuki M, Funahashi Y, Takagi K. Preparation of molecular cage by coordination of m-calix[3]amide bearing pyridine with palladium complex. Chem Lett. 2012;41:249–51.

    Article  CAS  Google Scholar 

  18. Yamakado R, Matsuoka S, Suzuki M, Takagi K, Katagiri K, Azumaya I. A screw-shaped alignment of pyrene using m-calix[3]amide. Tetrahedron. 2013;69:1516–20.

    Article  CAS  Google Scholar 

  19. Masu H, Katagiri K, Kato T, Kagechika H, Tominaga M, Azumaya I. Chiral spherical molecule constructed from aromatic amides: facile synthesis and highly ordered network structure in the crystal. J Org Chem. 2008;73:5143–6.

    Article  CAS  PubMed  Google Scholar 

  20. Fujimoto N, Matsumura M, Azumaya I, Nishiyama S, Masu H, Kagechika H, Tanatani A. Molecular chirality and chiral capsule-type dimer formation of cyclic triamides via hydrogen-bonding interactions. Chem Commun. 2012;48:4809–11.

    Article  CAS  Google Scholar 

  21. Yamakado R, Mikami K, Takagi K, Azumaya I, Sugimoto S, Matsuoka S, Suzuki M, Katagiri K, Uchiyama M, Muranaka A. Helicity induction in three pi-conjugated chromophores by planar chirality of calixamide. Chem Eur J. 2013;19:11853–7.

    Article  CAS  PubMed  Google Scholar 

  22. Saito Y, Satake M, Mori R, Okayasu M, Masu H, Tominaga M, Katagiri K, Yamaguchi K, Kikkawa S, Hikawa H, Azumaya I. Synthesis and chiroptical properties of cylindrical macrocycles comprising two calix[3]aramide moieties. Org Biomol Chem. 2020;18:230–6.

    Article  CAS  PubMed  Google Scholar 

  23. Yamakado R, Matsuoka S, Suzuki M, Takeuchi D, Masu H, Azumaya I, Takagi K. Diastereoselective cyclization of an aminobenzoic acid derivative and chiroptical properties of triple-stranded helical bis(phenylethynyl)benzene. Chem Commun. 2015;51:5710–3.

    Article  CAS  Google Scholar 

  24. Goff EL, Lacount RB. Some charge-transfer salts of 1,2,3,4,5-pentacarbomethoxycyclopentadienyl anion. J Am Chem Soc. 1963;85:1354–5.

    Article  Google Scholar 

  25. Bruce MI, Humphrey PA, Skelton BW, White AH. Pentakis(methoxycarbonyl)-cyclopentadiene chemistry. X. Crystal-structure of the charge-transfer complex tropylium pentakis(methoxycarbonyl)cyclopentadienide. Aust J Chem. 1986;39:165–9.

    Article  CAS  Google Scholar 

  26. Jayanty S, Radhakrishnan TP. ‘Core and sheath’ structure of a TTF complex forming a square grid. J Mater Chem. 1999;9:1707–11.

    Article  CAS  Google Scholar 

  27. Webster OW. Diazotetracyanocyclopentadiene and its conversion to tetracyanocyclopentadienide and pentacyanocyclopentadienide. J Am Chem Soc. 1965;87:1820–1.

    Article  CAS  Google Scholar 

  28. Sakai T, Seo S, Matsuoka J, Mori Y. Synthesis of functionalized tetracyanocyclopentadienides from tetracyanothiophene and sulfones. J Org Chem. 2013;78:10978–85.

    Article  CAS  PubMed  Google Scholar 

  29. Richardson C, Reed CA. Exploration of the pentacyano-cyclo-pentadienide ion, C5(CN)5-, as a weakly coordinating anion and potential superacid conjugate base. Silylation and protonation. Chem Commun. 2004;706–7.

  30. Less RJ, Mcpartlin M, Rawson JM, Wood PT, Wright DS. A simple approach to coordination compounds of the pentacyanocyclopentadienide anion. Chem Eur J. 2010;16:13723–8.

    Article  CAS  PubMed  Google Scholar 

  31. Bando Y, Haketa Y, Sakurai T, Matsuda W, Seki S, Takaya H, Maeda H. Ion-pairing assemblies based on pentacyano-substituted cyclopentadienide as a pi-electronic anion. Chem Eur J. 2016;22:7843–50.

    Article  CAS  PubMed  Google Scholar 

  32. Ino I, Zhong JC, Munakata M, Kuroda-Sowa T, Maekawa M, Suenaga Y, Kitamori Y. 2-D interwoven and 3-D 5-fold interpenetrating silver(i) complexes of 1-(isocyanidomethyl)-1H-benzotriazole and 1,3-bis(dicyanomethylidene)indan. Inorg Chem. 2000;39:4273–9.

    Article  CAS  PubMed  Google Scholar 

  33. Son Y, Kim S. New pH indicator based on 1,3-bisdicyanovinylindane. Dyes Pigments. 2005;64:153–5.

    Article  CAS  Google Scholar 

  34. Fujisawa J-i. An unusual mechanism for HOMO–LUMO gap narrowing in a minimal near-IR dye generated by the deprotonation of bis(dicyanomethylene)indan. Chem Phys Lett. 2014;608:355–9.

    Article  CAS  Google Scholar 

  35. Tanaka Y, Ichijo K, Kodama S, Aoyama S, Yoshida T, Yamakado R, Okada S. Various ionic crystals from the combination of 1,3-bis(dicyanomethylidene)indan anion and π-electronic cations. Cryst Growth Des. 2019;19:5811–8.

    Article  CAS  Google Scholar 

  36. Maeda H, Fukui A, Yamakado R, Yasuda N. Dipyrrolyphenol as a precursor of π-electronic anion that forms ion pairs with cations. Chem Commun. 2015;51:17572–5.

    Article  CAS  Google Scholar 

  37. Yamakado R, Ishibashi H, Motoyoshi Y, Yasuda N, Maeda H. Ion-pairing assemblies based on π-extended dipyrrolylquinoxalines. Chem Commun. 2019;55:326–9.

    Article  CAS  Google Scholar 

  38. Haketa Y, Maeda H. Dimension-controlled ion-pairing assemblies based on pi-electronic charged species. Chem Commun. 2017;53:2894–909.

    Article  CAS  Google Scholar 

  39. Haketa Y, Maeda H. Dimension-controlled π-electronic ion-pairing assemblies. Bull Chem Soc Jpn. 2018;91:420–36.

    Article  CAS  Google Scholar 

  40. Yamakado R, Sakurai T, Matsuda W, Seki S, Yasuda N, Akine S, Maeda H. π-Electron systems that form planar and interlocked anion complexes and their ion-pairing assemblies. Chem Eur J. 2016;22:626–38.

    Article  CAS  PubMed  Google Scholar 

  41. Yamakado R, Maeda H. Ion-pairing assemblies of photoresponsive cations and an interlocked [2 + 1]-type π-system-anion complex. J Photochem Photobiol A Chem. 2016;331:215–23.

    Article  CAS  Google Scholar 

  42. Yamakado R, Sato R, Shigeta Y, Maeda H. Ion-pairing crystal polymorphs of interlocked [2 + 1]-type receptor-anion complexes. J Org Chem. 2016;81:8530–6.

    Article  CAS  PubMed  Google Scholar 

  43. Yamakado R, Ashida Y, Sato R, Shigeta Y, Yasuda N, Maeda H. Cooperatively interlocked [2 + 1]-type π-system-anion complexes. Chem Eur J. 2017;23:4160–8.

    Article  CAS  PubMed  Google Scholar 

  44. Laursen BW, Krebs FC. Synthesis of a triazatriangulenium salt. Angew Chem Int Ed. 2000;39:3432–4.

    Article  CAS  Google Scholar 

  45. Laursen B W, Krebs F C. Synthesis, structure, and properties of azatriangulenium salts. Chem Eur J. 2001;7:1773–83.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author expresses gratitude to all his colleagues for their valuable contributions to this focus review. The author is deeply indebted to Prof. Shuji Okada (Yamagata University), Prof. Hiromitsu Maeda (Ritsumeikan University), and Prof. Koji Takagi (Nagoya Institute of Technology) for continuous encouragement and constructive discussions. This research was partly supported by the Grants-in-Aid for Scientific Research on Innovation Areas (“Photosynergetics” Area 2606, No. JP26107007) from the MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryohei Yamakado.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamakado, R. Well-defined arrangement of π-electronic systems based on precise molecular design. Polym J 52, 701–708 (2020). https://doi.org/10.1038/s41428-020-0338-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0338-5

Search

Quick links