Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Photoinduced self-initiated graft polymerization of methacrylate monomers on poly(ether ether ketone) substrates and surface parameters for controlling cell adhesion

A Correction to this article was published on 06 April 2020

This article has been updated

Abstract

One of the super engineering plastics, poly(ether ether ketone) (PEEK), was functionalized by photoinduced self-initiated graft polymerization of various methacrylate monomers. Anionic, cationic, zwitterionic, nonionic hydrophilic, and nonionic hydrophobic polymer layers were formed onto PEEK substrates. Physical and chemical surface characterizations of the resultant polymer-grafted PEEK substrates were performed through measurements of their surface free energies and ζ potentials. The values of these parameters varied in the ranges of 39–71 mJ/m2 and −69 to 46 mV, respectively. These parameters reflected the chemical structures of the grafted polymers. To understand the effects of these surface parameters on cell adhesion behavior at the substrate surface, the amount of fibronectin adsorbed on the plasma-contacting surface and the density of fibroblast cells adhered to the surface were determined. The adherent cell density showed a good linear correlation with the amount of fibronectin adsorbed on the plasma-contacting surface. The polymer surface with zero ζ potential showed a lower adsorbed fibronectin density. Both anionic and cationic polymer layers had increased cell adhesion compared with that on the original PEEK substrate, whereas the zwitterionic polymer layers significantly prevented cell adhesion. In conclusion, grafting zwitterionic polymers onto a PEEK substrate is anticipated to be useful in the development of a biomedical PEEK substrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 06 April 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Lu SX, Cebe P, Capel M. Thermal stability and thermal expansion studies of PEEK and related polyimides. Polymer. 1996;37:2999–3009.

    Article  CAS  Google Scholar 

  2. Pascual A, Toma M, Tsotra P, Grob M. On the stability of PEEK for short processing cycles at high temperatures and oxygen-containing atmosphere. Polym Deg Stab. 2019;165:161–9.

    Article  CAS  Google Scholar 

  3. Rings M, Lanzutti A, Bracco P, Fedrizzi L. Wear behavior of medical grade PEEK and CFR PEEK under dry and bovine serum conditions. Wear. 2018;408–409:86–95.

    Google Scholar 

  4. Toth JM, Wang M, Estes BT, Scifert JL, Seim HB 3rd, Turner AS. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials. 2006;27:324–34.

    Article  CAS  PubMed  Google Scholar 

  5. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28:4845–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mishra S, Chowdhary R. PEEK materials as an alternative to titanium in dental implants: a systematic review. Clin Implant Dent Relat Res. 2019;21:208–22.

    Article  PubMed  Google Scholar 

  7. Franchina NL, Mccarthy TJ. Surface modifications of poly(ether ether ketone). Macromolecules. 1991;24:3045–9.

    Article  CAS  Google Scholar 

  8. Ameen AP. An investigation of the surface chemical homogeneity of plasma oxidised poly(ether etherketone). Polym Degrad Stab. 1996;51:179–84.

    Article  CAS  Google Scholar 

  9. Riveiro A, Soto R, Comesana R, Boutinguiza M, del Val, Quintero F, et al. Laser surface modification of PEEK. Appl Surf Sci. 2012;258:9437–42.

    Article  CAS  Google Scholar 

  10. Tsou HK, Hsieh PY, Chi MH, Chung CJ, He JL. Improved osteoblast compatibility of medical-grade polyetheretherketone using arc ionplated rutile/anatase titanium dioxide films for spinal implants. J Biomed Mater Res Part A. 2012;100A:2787–92.

    Article  CAS  Google Scholar 

  11. Kunomura S, Iwasaki Y. Immobilization of polyphosphoesters on poly(ether ether ketone) (PEEK) for facilitating mineral coating. J Biomater Sci Polym Ed. 2019;30:861–76.

    Article  CAS  PubMed  Google Scholar 

  12. Fristrup CJ, Jankova K, Hvilsted S. Hydrophilization of poly(ether ether ketone) films by surface-initiated atom transfer radical polymerization. Polym Chem. 2010;1:1696–701.

    Article  CAS  Google Scholar 

  13. Yameen B, Alvarez M, Azzaroni O, Jonas U, Knoll W. Tailoring of poly(ether ether ketone) surface properties via surface-initiated atom transfer radical polymerization. Langmuir. 2009;25:6214–20.

    Article  CAS  PubMed  Google Scholar 

  14. Kyomoto M, Ishihara K. Self-initiated surface graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on poly(ether ether ketone) by photoirradiation. ACS Appl Mater. Interface. 2009;1:537–42.

    CAS  Google Scholar 

  15. Kyomoto M, Moro T, Takatori Y, Kawaguchi H, Nakamura K, Ishihara K. Self-initiated surface grafting with poly(2-methacryloyloxyethyl phosphorylcholine) on poly(ether-ether-ketone). Biomaterials. 2010;31:1017–24.

    Article  CAS  PubMed  Google Scholar 

  16. Kyomoto M, Moro T, Yamane S, Hashimoto M, Takatori Y, Ishihara K. Poly(ether-ether-ketone) orthopedic bearing surface modified by self-initiated surface grafting of poly(2-methacryloyloxyethyl phosphorylcholine). Biomaterials. 2013;34:7829–39.

    Article  CAS  PubMed  Google Scholar 

  17. Kyomoto M, Moro T, Yamane S, Watanabe K, Takatori Y, Tanaka S. Ishihara. Smart PEEK modified by self-initiated surface graft polymerization for orthopedic bearings. Reconstr Rev. 2014;4:36–45.

    Google Scholar 

  18. Tateishi T, Kyomoto M, Kakinoki S, Yamaoka T, Ishihara K. Reduced platelets and bacteria adhesion on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine. J Biomed Mater Res A. 2014;102:1342–9.

    Article  PubMed  CAS  Google Scholar 

  19. Shiojima T, Inoue Y, Kyomoto M, Ishihara K. High-efficiency preparation of poly(2-methacryloyloxyethyl phosphorylcholine) grafting layer on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization in an aqueous solution in the presence of inorganic salt additives. Acta Biomater. 2016;40:38–45.

    Article  CAS  PubMed  Google Scholar 

  20. Yamane S, Kyomoto M, Moro T, Hashimoto M, Takatori Y, Tanaka S, et al. Wear resistance of poly(2-methacryloyloxyethyl phosphorylcholine)-grafted carbon fiber reinforced poly(ether ether ketone) liners against metal and ceramic femoral heads. J Biomed Mater Res B Appl Biomater. 2018;106:1028–37.

    Article  CAS  PubMed  Google Scholar 

  21. Kambe Y, Mahara A, Tanaka H, Kakinoki S, Fukazawa K, Liu Y, et al. Short-term evaluation of thromboresistance of a poly(ether ether ketone) (PEEK) mechanical heart valve with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-grafted surface in a porcine aortic valve replacement model. J Biomed Mater Res A. 2019;107:1052–63.

    Article  CAS  PubMed  Google Scholar 

  22. Ishihara K. Highly lubricated polymer interfaces for advanced artificial hip joint through biomimetic design. Polym J. 2015;47:585–97.

    Article  CAS  Google Scholar 

  23. Kawasaki Y, Iwasaki Y. Surface modification of poly(ether ether ketone) with methacryloyl-functionalized phospholipid polymers via self-initiation graft polymerization. J Biomater Sci Polym Ed. 2014;25:895–906.

    Article  CAS  PubMed  Google Scholar 

  24. Yousaf A, Farrukh A, Oluz Z, Tuncel E, Duran H, Doğan SY, et al. UV-light assisted single step route to functional PEEK surfaces. React Funct Polym. 2014;83:70–5.

    Article  CAS  Google Scholar 

  25. Chouwatat P, Hirai T, Higaki K, Higaki Y, Sue HJ, Takahara A. Aqueous lubrication of poly(etheretherketone) via surface-initiated polymerization of electrolyte monomers. Polymer. 2017;116:549–55.

    Article  CAS  Google Scholar 

  26. Liu S, Zhu Y, Gao H, Ge P, Ren K, Gao J, et al. One-step fabrication of functionalized poly(etheretherketone) surfaces with enhanced biocompatibility and osteogenic activity. Mater Sci Eng C Mater Biol Appl. 2018;88:70–8.

    Article  CAS  PubMed  Google Scholar 

  27. Amdjadi P, Nojehdehian H, Najafi F, Ghasemi A, Seifi M, Dashtimoghadam E, et al. Ultraviolet-induced surface grafting of octafluoropentyl methacrylate on polyether ether ketone for inducing antibiofilm properties. J Biomater Appl. 2017;32:3–11.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao X, Xiong D, Wang K, Wang N. Improved biotribological properties of PEEK by photo-induced graft polymerization of acrylic acid. Mater Sci Eng C Mater Biol Appl. 2017;75:777–83.

    Article  CAS  PubMed  Google Scholar 

  29. Zheng Y, Liu L, Ma Y, Xiao L, Li Y. Enhanced osteoblasts responses to surface-sulfonated polyetheretherketone via a single-step ultraviolet-initiated graft polymerization. Ind Eng Chem Res. 2018;57:10403–10.

    Article  CAS  Google Scholar 

  30. Zheng Y, Liu L, Xiao L, Zhang Q, Liu Y. Enhanced osteogenic activity of phosphorylated polyetheretherketone via surface-initiated grafting polymerization of vinylphosphonic acid. Colloids Surf B Biointerfaces. 2019;173:591–8.

    Article  CAS  PubMed  Google Scholar 

  31. Oai K, Inoue Y, Nakao A, Fukazawa K, Ishihara K. Antibacterial effect of nanometer-size grafted layer of quaternary ammonium polymer on poly(ether ether ketone) substrate. J Appl Polym Sci. 2020;e49088. https://doi.org/10.1002/app.49088.

  32. Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J. 1990;22:355–60.

    Article  CAS  Google Scholar 

  33. Bangera AE, Appaiah K. A conditional justification for the determination of surface energy of solids using contact angle methods. Mater Chem Phys. 2019;234:168–71.

    Article  CAS  Google Scholar 

  34. Ishihara K, Ziats NP, Tierney BP, Nakabayashi N, Anderson JM. Protein adsorption from human plasma is reduced on phospholipid polymers. J Biomed Mater Res. 1991;25:1397–407.

    Article  CAS  PubMed  Google Scholar 

  35. Murakami D, Kobayashi M, Higaki Y, Jinnai H, Takahara A. Swollen structure and electrostatic interactions of polyelectrolyte brush in aqueous solution. Polymer. 2016;98:464–9.

  36. Ishihara K, Mu M, Konno T, Inoue Y, Fukazawa K. The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine). J Biomater Sci Polym Ed. 2017;28:884–99.

    Article  CAS  PubMed  Google Scholar 

  37. Cappelletti G, Ardizzone S, Meroni D, Soliveri G, Ceotto M, Biaggi C, et al. Wettability of bare and fluorinated silanes: a combined approach based on surface free energy evaluations and dipole moment calculations. J Colloid Interface Sci. 2013;389:284–91.

    Article  CAS  PubMed  Google Scholar 

  38. Pereni CI, Zhao Q, Liu Y, Abel E. Surface free energy effect on bacterial retention. Colloids Surf B Biointerfaces. 2006;48:143–7.

    Article  CAS  PubMed  Google Scholar 

  39. Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, Ishihara K, et al. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir. 2012;28:7212–22.

    Article  CAS  PubMed  Google Scholar 

  40. Ishihara K. Blood-compatible surfaces with phosphorylcholine-based polymers for cardiovascular medical devices. Langmuir. 2019;35:1778–87.

    Article  CAS  PubMed  Google Scholar 

  41. Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption. J Biomed Mater Res. 1998;39:323–30.

    Article  CAS  PubMed  Google Scholar 

  42. Sakata S, Inoue Y, Ishihara K. Quantitative evaluation of interaction force between functional groups in protein and polymer brush surfaces. Langmuir. 2014;30:2745–51.

    Article  CAS  PubMed  Google Scholar 

  43. Spriano S, Sarath Chandra V, Cochis A, Uberti F, Rimondini L, Bertone E, et al. How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials? Mater Sci Eng C Mater Biol Appl. 2017;74:542–55.

    Article  CAS  PubMed  Google Scholar 

  44. Hao L, Fu X, Li T, Zhao N, Shi X, Cui F, et al. Surface chemistry from wettability and charge for the control of mesenchymal stem cell fate through self-assembled monolayers. Colloids Surf B Biointerfaces. 2016;148:549–56.

    Article  CAS  PubMed  Google Scholar 

  45. Tzoneva R, Faucheux N, Groth T. Wettability of substrata controls cell-substrate and cell-cell adhesions. Biochim Biophys Acta. 2007;1770:1538–47.

    Article  CAS  PubMed  Google Scholar 

  46. Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 2007;28:3074–82.

    Article  CAS  PubMed  Google Scholar 

  47. Ishihara K, Kitagawa T, Inoue Y. Initial cell adhesion on well-defined surface by polymer brush layers with varying chemical structures. ACS Biomater Sci Eng. 2015;1:103–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the S-innovation Research Program for the “Development of the biofunctional materials for realization of innovative medicine”, Japan Agency for Medical Research and Development (AMED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Ishihara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishihara, K., Yanokuchi, S., Fukazawa, K. et al. Photoinduced self-initiated graft polymerization of methacrylate monomers on poly(ether ether ketone) substrates and surface parameters for controlling cell adhesion. Polym J 52, 731–741 (2020). https://doi.org/10.1038/s41428-020-0318-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0318-9

This article is cited by

Search

Quick links