Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Poly[oligo(2-ethyl-2-oxazoline) methacrylate] as a surface modifier for bioinertness

Abstract

Surface modification of versatile polymeric materials without changing their bulk properties is one of the essential techniques for regulating their physical and chemical characteristics, and this technique can improve the functions of materials. In this study, a bottlebrush-type poly[oligo(2-ethyl-2-oxazoline) methacrylate] (P[O(Ox)nMA]) (n = 7 and 19) was synthesized as a surface modifier. This compound was mixed into poly(methyl methacrylate) (PMMA) as a matrix (PMMA/P[O(Ox)nMA]) with a weight ratio of 15%, and the aggregation state in the surface region was examined under air and aqueous environments via atomic force microscopy, contact angle measurement, angular-dependent X-ray photoelectron spectroscopy, and neutron reflectivity. The surface of the PMMA/P[O(Ox)nMA] films was flat at the subnanometer level and covered with the PMMA-rich phase. However, once the films contacted water, the surface was reorganized due to the migration of P[O(Ox)nMA]. The extent of the surface segregation was more remarkable for P[O(Ox)7MA] than P[O(Ox)19MA] due to the entropic factor. Concurrently, NIH3T3 fibroblast adhesion and serum protein adsorption on the film were more strongly suppressed for P[O(Ox)7MA] than P[O(Ox)19MA] because it formed a thicker diffused interface in the film with water.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Pinson J, Thiry D Surface modification of polymers: methods and applications. Weinheim, Germany: Wiley-VCH Verlag; 2019.

  2. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang C, Ding X, Ono RJ, Lee H, Hsu LY, Tong YW, et al. Brush‒like polycarbonates containing dopamine, cations, and PEG providing a broad‒spectrum, antibacterial, and antifouling surface via one‒step coating. Adv Mater. 2014;26:7346–51.

    CAS  PubMed  Google Scholar 

  4. Park CH, Lee SY, Hwang DS, Shin DW, Cho DH, Lee KH, et al. Nanocrack-regulated self-humidifying membranes. Nature. 2016;532:480–3.

    PubMed  Google Scholar 

  5. Tung S, Fisher SL, Kotov NA, Thompson LT. Nanoporous aramid nanofibre separators for nonaqueous redox flow batteries. Nat Commun. 2018;9:4193.

    PubMed  PubMed Central  Google Scholar 

  6. Eickenscheidt M, Singler E, Stieglitz T. Pulsed electropolymerization of PEDOT enabling controlled branching. Polym J. 2019;51:1029–36.

    CAS  Google Scholar 

  7. Tibbitt MW, Rodell CB, Burdick JA, Anseth KS. Progress in material design for biomedical applications. Proc Natl Acad Sci USA. 2015;112:14444–51.

    CAS  PubMed  Google Scholar 

  8. Wei Q, Becherer T, Angioletti-Uberti S, Dzubiella J, Wischke C, Neffe AT, et al. Protein interactions with polymer coatings and biomaterials. Angew Chem Int Ed. 2014;53:8004–31.

    CAS  Google Scholar 

  9. Coessens V, Pintauer T, Matyjaszewski K. Functional polymers by atom transfer radical polymerization. Prog Polym Sci. 2001;26:337–77.

    CAS  Google Scholar 

  10. Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. In: Jordan R editor. Surface-initiated polymerization I, Adv Polym Sci. Berlin Heidelberg: Springer-Verlag; 2006. Vol. 197, p. 1–45.

  11. Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-initiated controlled radical polymerization: State-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem Rev. 2017;117:1105–318.

    CAS  PubMed  Google Scholar 

  12. Shiomoto S, Yamaguchi Y, Yamaguchi K, Nogata Y, Kobayashi M. Adhesion force measurement of live cypris tentacles by scanning probe microscopy in seawater. Polym J. 2019;51:51–9.

    CAS  Google Scholar 

  13. Zhang N, Pompe T, Amin I, Luxenhofer R, Werner C, Jordan R. Tailored poly(2‒oxazoline) polymer brushes to control protein adsorption and cell adhesion. Macromol Biosci. 2012;12:926–36.

    CAS  PubMed  Google Scholar 

  14. Tang P, Sd Cio, Wang W, Gautrot JE. Surface-initiated poly(oligo(2-alkyl-2-oxazoline)methacrylate) brushes. Langmuir. 2018;34:10019–27.

    CAS  PubMed  Google Scholar 

  15. Ishihara K, Yanokuchi S, Fukazawa K, Inoue Y. Photoinduced self-initiated graft polymerization of methacrylate monomers on poly(ether ether ketone) substrates and surface parameters for controlling cell adhesion. Polym J. 2020;52:731–41.

    CAS  Google Scholar 

  16. Zdyrko B, Luzinov I. Polymer brushes by the “grafting to” method. Macromol Rapid Commun. 2011;32:859–69.

    CAS  PubMed  Google Scholar 

  17. Bai L, Tan L, Chen L, Liu S, Wang Y. Preparation and characterizations of poly(2-methyl-2-oxazoline) based antifouling coating by thermally induced immobilization. J Mater Chem B. 2014;2:7785–94.

    CAS  PubMed  Google Scholar 

  18. Zheng X, Zhang C, Bai L, Liu S, Tan L, Wang Y. Antifouling property of monothiol-terminated bottle-brush poly(methylacrylic acid)-graft-poly(2-methyl-2-oxazoline) copolymer on gold surfaces. J Mater Chem B. 2015;3:1921–30.

    CAS  PubMed  Google Scholar 

  19. Wang H, Li L, Tong Q, Yan M. Evaluation of photochemically immobilized poly(2-ethyl-2-oxazoline) thin films as protein-resistant surfaces. ACS Appl Mater Interfaces. 2011;3:3463–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hara M, Kitahata S, Nishimori K, Miyahara K, Morita K, Tokuda K, et al. Surface-functionalization of isotactic polypropylene via dip-coating with a methacrylate-based terpolymer containing perfluoroalkyl groups and poly(ethylene glycol). Polym J. 2019;51:489–99.

    CAS  Google Scholar 

  21. Bhatia QS, Pan DH, Koberstein JT. Preferential surface adsorption in miscible blends of polystyrene and poly(vinyl methyl ether). Macromolecules. 1988;21:2166–75.

    CAS  Google Scholar 

  22. Tanaka K, Kawaguchi D, Yokoe Y, Kajiyama T, Takahara A, Tasaki S. Surface segregation of chain ends in α,ω-fluoroalkyl-terminated polystyrenes films. Polymer. 2003;44:4171–7.

    CAS  Google Scholar 

  23. Oda Y, Inutsuka M, Awane R, Totani M, Yamada LN, Haraguchi M, et al. Dynamic interface based on segregation of an amphiphilic hyperbranched polymer containing fluoroalkyl and oligo(ethylene oxide) moieties. Macromolecules. 2020;53:2380–7.

    CAS  Google Scholar 

  24. Yamamoto K, Kawaguchi D, Abe T, Komino T, Mamada M, Kabe T, et al. Surface segregation of a star-shaped polyhedral oligomeric silsesquioxane in a polymer matrix. Langmuir. 2020;36:9960–6.

    CAS  PubMed  Google Scholar 

  25. Tanaka K, Kajiyama T, Takahara A, Tasaki S. A novel method to examine surface composition in mixtures of chemically identical two polymers with different molecular weights. Macromolecules. 2002;35:4702–6.

    CAS  Google Scholar 

  26. Atarashi H, Ariura F, Akabori K, Ozawa M, Tanaka K, Nagamura T. Interfacial segregation of hyper-branched polystyrene in mixtures of linear component. Trans Mater Res Soc Jpn. 2007;32:231–4.

    CAS  Google Scholar 

  27. Hirai T, Liu H, Ohta Y, Yokozawa T, Tanaka K. Surface segregation of well-defied N-substituted hyperbranched polyamides in linear polymer matrix. Chem Lett. 2011;40:366–7.

    CAS  Google Scholar 

  28. Sugimoto S, Oda Y, Hirata T, Matsuyama R, Matsuno H, Tanaka K. Surface segregation of a branched polymer with hydrophilic poly[2-(2-ethoxy)ethoxyethyl vinyl ether] side chains. Polym Chem. 2017;8:505–10.

    CAS  Google Scholar 

  29. Matsuno H, Tsukamoto R, Oda Y, Tanaka K. Platelet adhesion on the surface of a simple poly(vinyl ether). Polymer. 2017;116:479–86.

    CAS  Google Scholar 

  30. Hirata T, Matsuno H, Kawaguchi D, Hirai T, Yamada NL, Tanaka M, et al. Effect of local chain dynamics on a bioinert interface. Langmuir. 2015;31:3661–7.

    CAS  PubMed  Google Scholar 

  31. Inutsuka M, Ito K, Yamada NL, Yokoyama H. High density polymer brush spontaneously formed by the segregation of amphiphilic diblock copolymers to polymer/water interface. ACS Macro Lett. 2013;2:265–8.

    CAS  Google Scholar 

  32. Matsuno H, Tsukamoto R, Shimomura S, Hirai T, Oda Y, Tanaka K. Platelet-adhesion behavior synchronized with surface rearrangement in a film of poly(methyl methacrylate) terminated with elemental blocks. Polym J. 2016;48:413–9.

    CAS  Google Scholar 

  33. Tateishi Y, Kai N, Noguchi H, Uosaki K, Nagamura T, Tanaka K. Local conformation of poly(methyl methacrylate) at nitrogen and water interfaces. Polym Chem. 2010;1:303–11.

    CAS  Google Scholar 

  34. Hong JH, Totani M, Kawaguchi D, Masunaga H, Yamada NL, Matsuno H, et al. Design of a bioinert interface using an amphiphilic block copolymer containing a bottlebrush unit of oligo(oxazoline). ACS Appl Bio Mater. 2020;3:7363–8.

    CAS  Google Scholar 

  35. Matsuno H, Totani M, Yamamoto A, Haraguchi M, Ozawa M, Tanaka K. Water-induced surface reorganization of bioscaffolds composed of an amphiphilic hyperbranched polymer. Polym J. 2019;51:1045–53.

    CAS  Google Scholar 

  36. Shundo A, Hori K, Ikeda T, Kimizuka N, Tanaka K. Design of a dynamic polymer interface for chiral discrimination. J Am Chem Soc. 2013;135:10282–5.

    CAS  PubMed  Google Scholar 

  37. Oda Y, Horinouchi A, Kawaguchi D, Matsuno H, Kanaoka S, Aoshima S, et al. Effect of side-chain carbonyl groups on the interface of vinyl polymers with water. Langmuir. 2014;30:1215–9.

    CAS  PubMed  Google Scholar 

  38. Li X, ShamsiJazeyi H, Pesek SL, Agrawal A, Hammoud B, Verduzco R. Thermoresponsive PNIPAAM bottlebrush polymers with tailored side-chain length and end-group structure. Soft Matter. 2014;10:2008–15.

    CAS  PubMed  Google Scholar 

  39. Verduzco R, Li X, Peseka SL, Stein GE. Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem Soc Rev. 2015;44:2405–20.

    CAS  PubMed  Google Scholar 

  40. Mitra I, Li X, Pesek SL, Makarenko B, Lokitz BS, Uhrig D, et al. Thin film phase behavior of bottlebrush/linear polymer blends. Macromolecules. 2014;47:5269–5276.

    CAS  Google Scholar 

  41. Oda Y. Construction of hydrophilic surfaces with poly(vinyl ether)s and their interfacial properties in water. Polym J. 2019;51:955–62.

    CAS  Google Scholar 

  42. Totani M, Liu L, Matsuno H, Tanaka K. Design of a star-like hyperbranched polymer having hydrophilic arms for anti-biofouling coating. J Mater Chem B. 2019;7:1045–9.

    CAS  PubMed  Google Scholar 

  43. Gaertner FC, Luxenhofer R, Blechert B, Jordan R. Essler M. Synthesis, biodistribution and excretion of radiolabeled poly(2-alkyl-2-oxazoline)s. J Control Release. 2007;119:291–300.

    CAS  PubMed  Google Scholar 

  44. Adams N, Schubert US. Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev. 2007;59:1504–20.

    CAS  PubMed  Google Scholar 

  45. Viegas TX, Bentley MD, Harris JM, Fang Z, Yoon K, Dizman B, et al. Polyoxazoline: Chemistry, properties, and applications in drug delivery. Bioconjug Chem. 2011;22:976–86.

    CAS  PubMed  Google Scholar 

  46. Tauhardt L, Kempe K, Gottschaldt M, Schubert US. Poly(2-oxazoline) functionalized surfaces: From modification to application. Chem Soc Rev. 2013;42:7998–8011.

    CAS  PubMed  Google Scholar 

  47. Jana S, Uchman M. Poly(2-oxazoline)-based stimulus-responsive (co)polymers: An overview of their design, solution properties, surface-chemistries and application. Prog Polym Sci. 2020;106:101252.

    CAS  Google Scholar 

  48. Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, et al. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials. 2018;178:204–80.

    CAS  PubMed  Google Scholar 

  49. Weber C, Remzi Becer C, Guenther W, Hoogenboom R, Schubert US. Dual responsive methacrylic acid and oligo(2-ethyl-2-oxazoline) containing graft copolymers. Macromolecules. 2010;43:160–7.

    CAS  Google Scholar 

  50. Gieseler D, Jordan R. Poly(2-oxazoline) molecular brushes by grafting through of poly(2-oxazoline)methacrylates with aqueous ATRP. Polym Chem. 2015;6:4678–89.

    CAS  Google Scholar 

  51. Tsai TY, Huang CF. Data in support of dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP. Data Brief. 2015;3:195–200.

    PubMed  PubMed Central  Google Scholar 

  52. Pape PG Coupling agents, silanes (Adhesion Promoters). In: The polymeric materials encyclopedia. Salomone JC editor, Boca Raton, FL, US: CRC Press, 1996.

  53. Yamada NL, Torikai N, Mitamura K, Sagehashi H, Sato S, Seto H, et al. Design and performance of horizontal-type neutron reflectometer SOFIA at J-PARC/MLF. Eur Phys J. 2011;126:108.

    Google Scholar 

  54. Mitamura K, Yamada NL, Sagehashi H, Torikai N, Arita H, Terada M, et al. Novel neutron reflectometer SOFIA at J-PARC/MLF for in-situ soft-interface characterization. Polym J. 2013;45:100–8.

    CAS  Google Scholar 

  55. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150:76–85.

    CAS  PubMed  Google Scholar 

  56. Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J Appl Polym Sci. 1969;13:1741–7.

    CAS  Google Scholar 

  57. Schneider HA. Conformational entropy contributions to the glass temperature of blends of miscible polymers. J Res Natl Inst Stand Technol. 1997;102:229–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Utracki LA Polymer Blends Handbook; Dordrecht, The Netherlands, and Boston, MA, US: Kluwer Academic Publishers, 2003.

  59. Tanaka K, Fujii Y, Atarashi H, Akabori K, Hino M, Nagamura T. Nonsolvents cause swelling at the interface with poly(methyl methacrylate) films. Langmuir. 2008;24:296–301.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for support from the JST-Mirai Program (JPMJMI18A2) (KT), JSPS KAKENHI Grant-in-Aids for Scientific Research (B) (JP20H02790) (KT) and (B) (JP18H02037) (HM), and for Early-Career Scientists (JP18K16990) (MT). The NR measurements were approved by the Neutron Scattering Program Advisory Committee of IMSS, KEK with Proposal Nos. 2018B0287, 2019A0255, 2019B0269, 2019B0365, 2020A0272, and 2017L2501.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hisao Matsuno or Keiji Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, JH., Totani, M., Kawaguchi, D. et al. Poly[oligo(2-ethyl-2-oxazoline) methacrylate] as a surface modifier for bioinertness. Polym J 53, 643–653 (2021). https://doi.org/10.1038/s41428-020-00459-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00459-7

This article is cited by

Search

Quick links