Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fabrication of single-ion conducting polymer-coated separators and their application in nonaqueous Li-O2 batteries

Abstract

Nonaqueous lithium-oxygen (Li-O2) batteries have attracted increasing attention as potential candidates for next-generation batteries due to their significantly high theoretical energy densities. However, they are still in their infancy due to numerous problems. In this study, a cross-linked single-ion conducting polymer network with a highly delocalized anionic group was coated onto a thin commercial polyethylene membrane separator via a facile UV polymerization method. The resulting polymer coating improves the electrolyte wettability and suppresses the diffusion of anionic species across the separator. The effect of the polymer modification of the separator on the electrochemical properties of nonaqueous Li-O2 cells was investigated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Padbury R, Zhang X. Lithium–oxygen batteries—Limiting factors that affect performance. J Power Sources. 1999;196:4436–44.

    Article  Google Scholar 

  2. Lu YC, Gallant BM, Kwabi DG, Harding JR, Mitchell RR, Whittingham MS, et al. Lithium-oxygen batteries: Bridging mechanistic understanding and battery performance. Energy Environ Sci. 2013;6:750–68.

    Article  CAS  Google Scholar 

  3. Grande L, Paillard E, Hassoun J, Park J-B, Lee Y-J, Sun Y-K, et al. The Lithium/Air Battery: Still an emerging system or a practical reality? Adv Mater. 2015;27:784–800.

    Article  CAS  Google Scholar 

  4. Yi J, Guo S, He P, Zhou H. Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries. Energy Environ Sci. 2017;10:860–84.

    Article  CAS  Google Scholar 

  5. Tong B, Huang J, Zhou Z, Peng Z. The salt matters: enhanced reversibility of Li-O2 batteries with a Li[(CF 3 SO 2)(n -C 4 F 9 SO 2)N]-based electrolyte. Adv Mater. 2018;30:1704841.

    Article  Google Scholar 

  6. Liu Z, Huang J, Zhang Y, Tong B, Guo F, Wang J, et al. Taming interfacial instability in lithium–oxygen batteries: A polymeric ionic liquid electrolyte solution. Adv Energy Mater. 2019;9:1901967.

    Article  CAS  Google Scholar 

  7. Kim JH, Kannan AG, Woo HS, Jin DG, Kim W, Ryu K, et al. A bi-functional metal-free catalyst composed of dual-doped graphene and mesoporous carbon for rechargeable lithium-oxygen batteries. J Mater Chem A. 2015;3:18456–65.

    Article  CAS  Google Scholar 

  8. Kim JH, Woo HS, Kim WK, Ryu KH, Kim DW. Improved cycling performance of lithium-oxygen cells by use of a lithium electrode protected with conductive polymer and aluminum fluoride. ACS Appl Mater Interfaces. 2016;8:32300–6.

    Article  CAS  Google Scholar 

  9. Woo HS, Moon YB, Seo S, Lee HT, Kim DW. Semi-interpenetrating polymer network composite gel electrolytes employing vinyl-functionalized silica for lithium-oxygen batteries with enhanced cycling stability. ACS Appl Mater Interfaces. 2018;10:687–95.

    Article  CAS  Google Scholar 

  10. Ue M, Sakaushi K, Uosaki K. Basic knowledge in battery research bridging the gap between academia and industry. Mater Horiz. 2020;7:1937–54.

    Article  CAS  Google Scholar 

  11. Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG. Charging a Li-O2 battery using a redox mediator. Nat Chem. 2013;5:489–94.

    Article  Google Scholar 

  12. Liang Z, Lu YC. Critical role of redox mediator in suppressing charging instabilities of lithium-oxygen batteries. J Am Chem Soc. 2016;138:7574–83.

    Article  CAS  Google Scholar 

  13. Lee DJ, Lee H, Kim Y-J, Park J-K, Kim H-T. Sustainable Redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode. Adv Mater. 2016;28:857–63.

    Article  CAS  Google Scholar 

  14. Ryu WH, Gittleson FS, Thomsen JM, Li J, Schwab MJ, Brudvig GW, et al. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nat Commun. 2016;7:1–10.

    Article  Google Scholar 

  15. Xin X, Ito K, Kubo Y. Highly efficient Br–/NO3– dual-anion electrolyte for suppressing charging instabilities of Li–O2 batteries. ACS Appl Mater Interfaces. 2017;9:25976–84.

    Article  CAS  Google Scholar 

  16. Park J-B, Lee SH, Jung H-G, Aurbach D, Sun Y-K. Redox mediators for Li-O2 batteries: Status and perspectives. Adv Mater. 2018;30:1704162.

    Article  Google Scholar 

  17. Lacey MJ, Frith JT, Owen JR. A redox shuttle to facilitate oxygen reduction in the lithium air battery. Electrochem Commun. 2013;26:74–6.

    Article  CAS  Google Scholar 

  18. Yang L, Frith JT, Garcia-Araez N, Owen JR. A new method to prevent degradation of lithium-oxygen batteries: Reduction of superoxide by viologen. Chem Commun. 2015;51:1705–8.

    Article  CAS  Google Scholar 

  19. Gao X, Chen Y, Johnson L, Bruce PG. Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nat Mater. 2016;15:882–8.

    Article  CAS  Google Scholar 

  20. Kim BG, Kim J-S, Min J, Lee Y-H, Choi JH, Jang MC, et al. A moisture- and oxygen-impermeable separator for aprotic Li-O2 batteries. Adv Funct Mater. 2016;26:1747–56.

    Article  CAS  Google Scholar 

  21. Aetukuri NB, Kitajima S, Jung E, Thompson LE, Virwani K, Reich M-L, et al. Flexible ion-conducting composite membranes for lithium batteries. Adv Energy Mater. 2015;5:1500265.

    Article  Google Scholar 

  22. Choi W, Kim M, Park JO, Kim J-H, Choi K, Kim YS, et al. Ion-channel aligned gas-blocking membrane for lithium-air batteries. Sci Rep. 2017;7:12037.

    Article  Google Scholar 

  23. Qiao Y, Wang Q, Mu X, Deng H, He P, Yu J, et al. Advanced hybrid electrolyte Li-O2 Battery realized by dual superlyophobic membrane. Joule. 2019. https://doi.org/10.1016/j.joule.2019.09.002.

    Article  Google Scholar 

  24. Meini S, Solchenbach S, Piana M, Gasteiger HA. The Role of electrolyte solvent stability and electrolyte impurities in the electrooxidation of Li2 O2 in Li-O2 batteries. J Electrochem Soc. 2014;161:A1306–A1314.

    Article  CAS  Google Scholar 

  25. Zhang M, Takahashi K, Uechi I, Takeda Y, Yamamoto O, Im D, et al. Water-stable lithium anode with Li 1.4 Al 0.4 Ge 1.6 (PO 4) 3 -TiO 2 sheet prepared by tape casting method for lithium-air batteries. J Power Sources. 2013;235:117–21.

    Article  CAS  Google Scholar 

  26. Bergner BJ, Busche MR, Pinedo R, Berkes BB, Schröder D, Janek J. How to improve capacity and cycling stability for next generation Li-O2 batteries: Approach with a Solid electrolyte and elevated redox mediator concentrations. ACS Appl Mater Interfaces. 2016;8:7756–65.

    Article  CAS  Google Scholar 

  27. Kwak W-J, Jung H-G, Aurbach D, Sun Y-K. Optimized bicompartment two solution cells for effective and stable operation of Li-O2 batteries. Adv Energy Mater. 2017;7:1701232.

    Article  Google Scholar 

  28. Wu S, Qiao Y, Deng H, Zhou H. A single ion conducting separator and dual mediator-based electrolyte for high-performance lithium–oxygen batteries with non-carbon cathodes. J Mater Chem A. 2018;6:9816–22.

    Article  CAS  Google Scholar 

  29. Meziane R, Bonnet J-P, Courty M, Djellab K, Armand M. Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim Acta. 2011;57:14–9.

    Article  CAS  Google Scholar 

  30. Feng S, Shi D, Liu F, Zheng L, Nie J, Feng W, et al. Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions. Electrochim Acta. 2013;93:254–63.

    Article  CAS  Google Scholar 

  31. Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet J-P, et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat Mater. 2013;12:452–7.

    Article  CAS  Google Scholar 

  32. Zhang H, Li C, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez LM, et al. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev. 2017;46:797–815.

    Article  CAS  Google Scholar 

  33. Lee SH, Park J-B, Lim H-S, Sun Y-K. An advanced separator for Li-O2 batteries: Maximizing the effect of redox mediators. Adv Energy Mater 2017;7:1602417.

    Article  Google Scholar 

  34. Deng H, Qiao Y, Wu S, Qiu F, Zhang N, He P, et al. Nonaqueous, metal-free, and hybrid electrolyte Li-Ion O2 battery with a single-ion-conducting separator. ACS Appl Mater Interfaces. 2019;11:4908–14.

    Article  CAS  Google Scholar 

  35. Imani M, Sharifi S, Mirzadeh H, Ziaee F. Monitoring of Polyethylene glycol-diacrylate-based hydrogel formation by real time NMR spectroscopy. Iran Polym J. 2007;16:13–20.

    CAS  Google Scholar 

  36. Wu A, Lu F, Sun P, Qiao X, Gao X, Zheng L. Low-molecular-weight supramolecular ionogel based on host–guest interaction. Langmuir. 2017;33:13982–9.

    Article  CAS  Google Scholar 

  37. Kichambare P, Kumar J, Rodrigues S, Kumar B. Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium-oxygen batteries. J Power Sources. 2011;196:3310–6.

    Article  CAS  Google Scholar 

  38. Yang XH, Xia YY. The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery. J Solid State Electrochem. 2010;14:109–14.

    Article  CAS  Google Scholar 

  39. Lin X, Zhou L, Huang T, Yu A. Hierarchically porous honeycomb-like carbon as a lithium–oxygen electrode. J Mater Chem A. 2013;1:1239–45.

    Article  CAS  Google Scholar 

  40. Chamaani A, Safa M, Chawla N, El-Zahab B. Composite Gel polymer electrolyte for improved cyclability in lithium-oxygen batteries. ACS Appl Mater Interfaces. 2017;9:33819–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Iketani Science and Technology Foundation and Grants-in-Aid for Scientific Research (No. 20K15349 to RT) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. This work also received support from the National Institute for Materials Science (NIMS) Battery Research Platform. PP and KS are indebted to the NIMS Internship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryota Tamate.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poungsripong, P., Tamate, R., Ono, M. et al. Fabrication of single-ion conducting polymer-coated separators and their application in nonaqueous Li-O2 batteries. Polym J 53, 549–556 (2021). https://doi.org/10.1038/s41428-020-00449-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00449-9

Search

Quick links