Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polymers of lignin-sourced components as a facile chemical integrant for the Passerini three-component reaction

Abstract

In this work, poly(methacrylated vanillin) (PMV) was investigated for its reactivity in multicomponent reactions as a reactive polymer that can be sourced from lignin-based components. To achieve sustainable polymer chemistry, the PMV reactivity in a Passerini three-component reaction (Passerini-3CR) was investigated because the reactants in the Passerini-3CR can be abundantly sourced from biobased compounds. First, the Passerini-3CR of the PMV in solution phases revealed that the PMV pendant aldehydes can be converted into the corresponding α-acyloxy amides with >90% conversions under the optimized conditions. Taking advantage of this high reactivity of PMV, its immobilized cellulose fabric (Cell-g-PMV), a wood biomass-sourced organic hybrid, was subjected to the Passerini-3CR. Although the aldehydes were not completely converted, the PMV segments surrounding the fabric surfaces successfully reacted via the Passerini-3CR to engraft carboxylic acid and isocyanide components on the cellulose-based fabrics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee SH, Kang JS, Kim D. A mini review: recent advances in surface modification of porous silicon. Materials. 2018;11. https://doi.org/10.3390/ma11122557.

  2. Ma W, Yah WO, Otsuka H, Takahara A. Surface functionalization of aluminosilicate nanotubes with organic molecules. Beilstein J Nanotechnol. 2012;3:82–100. https://doi.org/10.3762/bjnano.3.10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, et al., Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344. https://doi.org/10.1126/science.1246843.

  4. Klemm D, Heublein B, Fink H-P, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 2005;44:3358–93. https://doi.org/10.1002/anie.200460587.

    Article  CAS  Google Scholar 

  5. Kopetz H. Renewable resources: build a biomass energy market. Nature. 2013;494:29–31. https://doi.org/10.1038/494029a.

    Article  CAS  PubMed  Google Scholar 

  6. Holmberg AL, Reno KH, Nguyen NA, Wool RP, Epps TH. Syringyl methacrylate, a hardwood lignin-based monomer for High-Tg polymeric materials. ACS Macro Lett. 2016;5:574–8. https://doi.org/10.1021/acsmacrolett.6b00270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Holmberg AL, Stanzione JF, Wool RP III, Epps TH III. A facile method for generating designer block copolymers from functionalized lignin model compounds. ACS Sustain Chem Eng. 2014;2:569–73. https://doi.org/10.1021/sc400497a.

    Article  CAS  Google Scholar 

  8. Zhou J, Zhang H, Deng J, Wu Y. High glass-transition temperature acrylate polymers derived from biomasses, syringaldehyde, and vanillin. Macromol Chem Phys. 2016;217:2402–8. https://doi.org/10.1002/macp.201600305.

    Article  CAS  Google Scholar 

  9. Holmberg AL, Nguyen NA, Karavolias MG, Reno KH, Wool RP, Epps TH. Softwood lignin-based methacrylate polymers with tunable thermal and viscoelastic properties. Macromolecules. 2016;49:1286–95. https://doi.org/10.1021/acs.macromol.5b02316.

    Article  CAS  Google Scholar 

  10. Holmberg AL, Karavolias MG, Epps TH III. RAFT polymerization and associated reactivity ratios of methacrylate-functionalized mixed bio-oil constituents. Polym Chem. 2015;6:5728–39. https://doi.org/10.1039/C5PY00291E.

    Article  CAS  Google Scholar 

  11. Kakuchi R, Yoshida S, Sasaki T, Kanoh S, Maeda K. Multi-component post-polymerization modification reactions of polymers featuring lignin-model compounds. Polym Chem. 2018;9:2109–15. https://doi.org/10.1039/C7PY01923H.

    Article  CAS  Google Scholar 

  12. Hamada T, Yamashita S, Omichi M, Yoshimura K, Ueki Y, Seko N, et al. Multicomponent-reaction-ready biomass-sourced organic hybrids fabricated via the surface immobilization of polymers with lignin-based compounds. ACS Sustain Chem Eng. 2019;7:7795–803. https://doi.org/10.1021/acssuschemeng.8b06812.

    Article  CAS  Google Scholar 

  13. Deng X-X, Li L, Li Z-L, Lv A, Du F-S, Li Z-C. Sequence regulated poly(ester-amide)s based on passerini reaction. ACS Macro Lett. 2012;1:1300–3. https://doi.org/10.1021/mz300456p.

    Article  CAS  Google Scholar 

  14. Kakuchi R, Theato P. Efficient multicomponent postpolymerization modification based on Kabachnik-fields reaction. ACS Macro Lett. 2014;3:329–32. https://doi.org/10.1021/mz500139c.

    Article  CAS  Google Scholar 

  15. Kreye O, Türünç O, Sehlinger A, Rackwitz J, Meier MAR. Structurally diverse polyamides obtained from monomers derived via the Ugi multicomponent reaction. Chem Eur J. 2012;18:5767–76. https://doi.org/10.1002/chem.201103341.

    Article  CAS  PubMed  Google Scholar 

  16. Li L, Kan X-W, Deng X-X, Song C-C, Du F-S, Li Z-C. Simultaneous dual end-functionalization of peg via the passerini three-component reaction for the synthesis of ABC miktoarm terpolymers. J Polym Sci Part A. 2013;51:865–73. https://doi.org/10.1002/pola.26443.

    Article  CAS  Google Scholar 

  17. Kreye O, Tóth T, Meier MAR. Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers. J Am Chem Soc. 2011;133:1790–2. https://doi.org/10.1021/ja1113003.

    Article  CAS  PubMed  Google Scholar 

  18. Lee I-H, Kim H, Choi T-L. Cu-catalyzed multicomponent polymerization to synthesize a library of poly(N-sulfonylamidines). J Am Chem Soc. 2013;135:3760–3. https://doi.org/10.1021/ja312592e.

    Article  CAS  PubMed  Google Scholar 

  19. Jee J-A, Spagnuolo LA, Rudick JG. Convergent synthesis of dendrimers via the Passerini three-component reaction. Org Lett. 2012;14:3292–5. https://doi.org/10.1021/ol301263v.

    Article  CAS  PubMed  Google Scholar 

  20. Deng XX, Cui Y, Du FS, Li ZC. Functional highly branched polymers from multicomponent polymerization (MCP) based on the ABC type Passerini reaction. Polym Chem. 2014;5:3316–20. https://doi.org/10.1039/c3py01705b.

    Article  CAS  Google Scholar 

  21. Zhao Y, Yang B, Zhu CY, Zhang YL, Wang SQ, Fu CK, et al. Introducing mercaptoacetic acid locking imine reaction into polymer chemistry as a green click reaction. Polym Chem. 2014;5:2695–9. https://doi.org/10.1039/c4py00058g.

    Article  CAS  Google Scholar 

  22. Zhu C, Yang B, Zhao Y, Fu C, Tao L, Wei Y. A new insight into the Biginelli reaction: the dawn of multicomponent click chemistry? Polym Chem. 2013;4:5395–400. https://doi.org/10.1039/C3PY00553D.

    Article  CAS  Google Scholar 

  23. Kakuchi R. Multicomponent reactions in polymer synthesis. Angew Chem Int Ed. 2014;53:46–8. https://doi.org/10.1002/anie.201305538.

    Article  CAS  Google Scholar 

  24. Rudick JG. Innovative macromolecular syntheses via isocyanide multicomponent reactions. J Polym Sci Part A. 2013;51:3985–91. https://doi.org/10.1002/Pola.26808.

    Article  CAS  Google Scholar 

  25. Yang B, Zhao Y, Wei Y, Fu C, Tao L. The Ugi reaction in polymer chemistry: syntheses, applications and perspectives. Polym Chem. 2015;6:8233–9. https://doi.org/10.1039/C5PY01398D.

    Article  CAS  Google Scholar 

  26. Kakuchi R. The dawn of polymer chemistry based on multicomponent reactions. Polym J. 2019;51:945–53. https://doi.org/10.1038/s41428-019-0209-0.

    Article  CAS  Google Scholar 

  27. Pettignano A, Daunay A, Moreau C, Cathala B, Charlot A, Fleury E. Sustainable modification of carboxymethyl cellulose by passerini three-component reaction and subsequent adsorption onto cellulosic substrates. ACS Sustain Chem Eng. 2019;7:14685–96. https://doi.org/10.1021/acssuschemeng.9b02634.

    Article  CAS  Google Scholar 

  28. Khine YY, Ganda S, Stenzel MH. Covalent tethering of temperature responsive pNIPAm onto TEMPO-Oxidized cellulose nanofibrils via three-component Passerini reaction. ACS Macro Lett. 2018;7:412–8. https://doi.org/10.1021/acsmacrolett.8b00051.

    Article  CAS  Google Scholar 

  29. Ramozzi R, Morokuma K. Revisiting the passerini reaction mechanism: existence of the nitrilium, organocatalysis of its formation, and solvent effect. J Org Chem. 2015;80:5652–7. https://doi.org/10.1021/acs.joc.5b00594.

    Article  CAS  PubMed  Google Scholar 

  30. Maeda S, Komagawa S, Uchiyama M, Morokuma K. Finding reaction pathways for multicomponent reactions: the Passerini reaction is a four-component reaction. Angew Chem Int Ed. 2011;50:644–9. https://doi.org/10.1002/anie.201005336.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RK profoundly acknowledges the Leading Initiative for Excellent Young Researchers (LEADER) and a Grant-in-Aid for Scientific Research (C) (no. 19K05578) for financial support. MO also profoundly acknowledges the JSPS Bilateral Joint Research Project (JPJSBP 120208601) and QST President's Strategic Grant Exploratory Research for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryohei Kakuchi or Noriaki Seko.

Ethics declarations

Conflict of interest

We declare that there are no conflicts of interest to this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakuchi, R., Tsuji, R., Fukasawa, K. et al. Polymers of lignin-sourced components as a facile chemical integrant for the Passerini three-component reaction. Polym J 53, 523–531 (2021). https://doi.org/10.1038/s41428-020-00448-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00448-w

This article is cited by

Search

Quick links