Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aqueous spinning system with a citrate buffer for highly extensible silk fibers

Abstract

Inspired by the natural spinning process, we developed an aqueous wet spinning system using a citrate buffer with polyethylene glycol (PEG), where the citrate buffer served for ion exchange and acidification and the PEG functioned for dehydration. This biomimetic condition induced the formation of solid fibers with a core–shell structure. The PEG layer could be subsequently removed by the equipped water bath, resulting in amorphous silk fibers. Due to the amorphous state, the silk fibers could be stretched at up to 12 times the original reel speed. Eventually, the mechanical properties featured an extraordinary extension of ~100% and a toughness of ~70 MJ/m3. The crystalline state of the resultant fibers was characterized by synchrotron WAXS to determine the degree of crystallinity and orientation of the beta-sheet structure. Interestingly, the citrate buffer-mediated spinning system enabled tuning of the induction of crystallization by changing the citrate buffer concentrations and coagulation time. The current amorphous spinning of regenerated silk fibers provided in-depth insights into the green and sustainable fabrication of artificial capture-silk-like fibers with unique extensibility and toughness.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Koeppel A, Holland C. Progress and trends in artificial silk spinning: a systematic review. ACS Biomater Sci Eng. 2017;3:226–37.

    CAS  Google Scholar 

  2. Andersson M, Jia Q, Abella A, Lee X-Y, Landreh M, Purhonen P, et al. Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nat Chem Biol. 2017;13:262.

    CAS  PubMed  Google Scholar 

  3. Rising A, Johansson J. Toward spinning artificial spider silk. Nat Chem Biol. 2015;11:309–15.

    CAS  PubMed  Google Scholar 

  4. Yao J, Masuda H, Zhao C, Asakura T. Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate. Macromolecules. 2002;35:6–9.

    CAS  Google Scholar 

  5. Numata K. How to define and study structural proteins as biopolymer materials. Polym J. 2020;52:1043–56.

    CAS  Google Scholar 

  6. Numata K, Katashima T, Sakai T. State of water, molecular structure, and cytotoxicity of silk hydrogels. Biomacromolecules. 2011;12:2137–44.

    CAS  PubMed  Google Scholar 

  7. Tarakanova A, Buehler MJ. The role of capture spiral silk properties in the diversification of orb webs. J R Soc Interface. 2012;9:3240–8.

    PubMed  PubMed Central  Google Scholar 

  8. Cranford SW, Tarakanova A, Pugno NM, Buehler MJ. Nonlinear material behaviour of spider silk yields robust webs. Nature. 2012;482:72–91.

    CAS  PubMed  Google Scholar 

  9. Numata K, Masunaga H, Hikima T, Sasaki S, Sekiyama K, Takata M. Use of extension-deformation-based crystallisation of silk fibres to differentiate their functions in nature. Soft Matter. 2015;11:6335–42.

    CAS  PubMed  Google Scholar 

  10. Perea GB, Riekel C, Guinea GV, Madurga R, Daza R, Burghammer M, et al. Identification and dynamics of polyglycine II nanocrystals in Argiope trifasciata flagelliform silk. Sci Rep. 2013;3:1–6.

    Google Scholar 

  11. dos Santos-Pinto JRA, Arcuri HA, Esteves FG, Palma MS, Lubec G. Spider silk proteome provides insight into the structural characterization of Nephila clavipes flagelliform spidroin. Sci Rep. 2018;8:1–12.

    Google Scholar 

  12. Yazawa K, Malay AD, Ifuku N, Ishii T, Masunaga H, Hikima T, et al. Combination of amorphous silk fiber spinning and postspinning crystallization for tough regenerated silk fibers. Biomacromolecules. 2018;19:2227–37.

    CAS  PubMed  Google Scholar 

  13. Um IC, Kweon H, Park YH, Hudson S. Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int J Biol Macromol. 2001;29:91–7.

    CAS  PubMed  Google Scholar 

  14. Um IC, Kweon HY, Lee KG, Park YH. The role of formic acid in solution stability and crystallization of silk protein polymer. Int J Biol Macromol. 2003;33:203–13.

    CAS  PubMed  Google Scholar 

  15. Xia X-X, Qian Z-G, Ki CS, Park YH, Kaplan DL, Lee SY. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc Natl Acad Sci USA. 2010;107:14059–63.

    CAS  PubMed  Google Scholar 

  16. Chen J, Hu J, Sasaki S, Naka K. Modular assembly of a conserved repetitive sequence in the spider eggcase silk: from gene to fiber. ACS Biomater Sci Eng. 2018;4:2748–57.

    CAS  Google Scholar 

  17. Gnesa E, Hsia Y, Yarger JL, Weber W, Lin-Cereghino J, Lin-Cereghino G, et al. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers. Biomacromolecules. 2012;13:304–12.

    CAS  PubMed  Google Scholar 

  18. Sohn S, Gido SP. Wet-spinning of osmotically stressed silk fibroin. Biomacromolecules. 2009;10:2086–91.

    CAS  PubMed  Google Scholar 

  19. Madurga R, Gañán-Calvo AM, Plaza GR, Atienza JM, Guinea GV, Elices M, et al. Comparison of the effects of post-spinning drawing and wet stretching on regenerated silk fibers produced through straining flow spinning. Polymer. 2018;150:311–7.

    CAS  Google Scholar 

  20. Peng Q, Zhang Y, Lu L, Shao H, Qin K, Hu X, et al. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip. Sci Rep. 2016;6:36473.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Heidebrecht A, Eisoldt L, Diehl J, Schmidt A, Geffers M, Lang G, et al. Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv Mater. 2015;27:2189–94.

    CAS  PubMed  Google Scholar 

  22. Venkatesan H, Chen J, Liu H, Kim Y, Na S, Liu W, et al. Artificial spider silk is smart like natural one: having humidity-sensitive shape memory with superior recovery stress. Mater Chem Front. 2019;3:2472–82.

    CAS  Google Scholar 

  23. Yan J, Zhou G, Knight DP, Shao Z, Chen X. Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution: discussion of spinning parameters. Biomacromolecules. 2010;11:1–5.

    CAS  PubMed  Google Scholar 

  24. Zhou G, Shao Z, Knight DP, Yan J, Chen X. Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts. Adv Mater. 2009;21:366–70.

    CAS  Google Scholar 

  25. Ling S, Zhou L, Zhou W, Shao Z, Chen X. Conformation transition kinetics and spinnability of regenerated silk fibroin with glycol, glycerol and polyethylene glycol. Mater Lett. 2012;81:13–5.

    CAS  Google Scholar 

  26. Canetti M, Seves A, Secundo F, Vecchio G. CD and small-angle x-ray scattering of silk fibroin in solution. Biopolymers. 1989;28:1613–24.

    CAS  PubMed  Google Scholar 

  27. Arcidiacono S, Mello CM, Butler M, Welsh E, Soares JW, Allen A, et al. Aqueous processing and fiber spinning of recombinant spider silks. Macromolecules. 2002;35:1262–6.

    CAS  Google Scholar 

  28. Shao Z, Vollrath F, Yang Y, Thøgersen HC. Structure and behavior of regenerated spider silk. Macromolecules. 2003;36:1157–61.

    CAS  Google Scholar 

  29. Asakura T, Kato H, Yao J, Kishore R, Shirai M. Design, expression, and structural characterization of hybrid proteins of Samia cynthia ricini and Bombyx mori silk fibroins. Polym J. 2002;34:936–43.

    CAS  Google Scholar 

  30. KSpieß, Wohlrab S, Scheibel T. Structural characterization and functionalization of engineered spider silk films. Soft Matter. 2010;6:4168–74.

    Google Scholar 

  31. Hijirida DH, Do KG, Michal C, Wong S, Zax D, Jelinski LW. 13C NMR of Nephila clavipes major ampullate silk gland. Biophys J. 1996;71:3442–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Heim M, Keerl D, Scheibel T. Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed. 2009;48:3584–96.

    CAS  Google Scholar 

  33. Oktaviani NA, Matsugami A, Hayashi F, Numata K. Ion effects on the conformation and dynamics of repetitive domains of a spider silk protein: implications for solubility and beta-sheet formation. Chem Commun. 2019;55:9761–4.

    CAS  Google Scholar 

  34. Oktaviani NA, Matsugami A, Malay AD, Hayashi F, Kaplan DL, Numata K. Conformation and dynamics of soluble repetitive domain elucidates the initial beta-sheet formation of spider silk. Nat Commun. 2018;9:2121.

    PubMed  PubMed Central  Google Scholar 

  35. Hofmeister F. Zur lehre von der wirkung der salze. Arch Exp Pathol Pharmakol. 1888;25:1–30.

    Google Scholar 

  36. Fang G, Huang Y, Tang Y, Qi Z, Yao J, Shao Z, et al. Insights into silk formation process: correlation of mechanical properties and structural evolution during artificial spinning of silk fibers. ACS Biomater Sci Eng. 2016;2:1992–2000.

    CAS  Google Scholar 

  37. Numata K, Ifuku N, Masunaga H, Hikima T, Sakai T. Silk resin with hydrated dual chemical-physical cross-links achieves high strength and toughness. Biomacromolecules. 2017;18:1937–46.

    CAS  PubMed  Google Scholar 

  38. Tsuchiya K, Kurokawa N, Gimenez-Dejoz J, Gudeangadi PG, Masunaga H, Numata K. Periodic introduction of aromatic units in polypeptides via chemoenzymatic polymerization to yield specific secondary structures with high thermal stability. Polym J. 2019;51:1287–98.

    CAS  Google Scholar 

  39. Slotta UK, Rammensee S, Gorb S, Scheibel T. An engineered spider silk protein forms microspheres. Angew Chem Int Ed. 2008;47:4592–4.

    CAS  Google Scholar 

  40. Tsuchiya K, Masunaga H, Numata K. Tensile reinforcement of silk films by the addition of telechelic-type polyalanine. Biomacromolecules. 2017;18:1002–9.

    CAS  PubMed  Google Scholar 

  41. Madurga R, Gañán-Calvo AM, Plaza GR, Guinea GV, Elices M, Pérez-Rigueiro J. Production of high performance bioinspired silk fibers by straining flow spinning. Biomacromolecules. 2017;18:1127–33.

    CAS  PubMed  Google Scholar 

  42. An B, Hinman MB, Holland GP, Yarger JL, Lewis RV. Inducing β-sheets formation in synthetic spider silk fibers by aqueous post-spin stretching. Biomacromolecules. 2011;12:2375–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsukada M, Gotoh Y, Nagura M, Minoura N, Kasai N, Freddi G. Structural changes of silk fibroin membranes induced by immersion in methanol aqueous solutions. J Polym Sci B. 1994;32:961–8.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the RIKEN Engineering Network Project, Impulsing Paradigm Change through Disruptive Technologies Program (ImPACT) and JST ERATO (grant number JPMJER1602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Numata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Ohta, Y., Nakamura, H. et al. Aqueous spinning system with a citrate buffer for highly extensible silk fibers. Polym J 53, 179–189 (2021). https://doi.org/10.1038/s41428-020-00419-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00419-1

This article is cited by

Search

Quick links