Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recent developments in microbial polyester fiber and polysaccharide ester derivative research

Abstract

To establish a sustainable material production system and preserve the Earth’s environment, “biomass plastics” that are made from renewable biomass instead of petroleum and “biodegradable plastics” that are completely degraded into carbon dioxide and water by enzymes secreted by microorganisms in the environment are desirable products. This miniature review describes a series of studies on microbial polyesters and polysaccharide ester derivatives, including the synthesis of novel polymers, development of new processing techniques for high-performance films and fibers, elucidation of the relationship between structure and properties using synchrotron radiation, and control of the rate of enzymatic degradation.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Iwata T. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed. 2015;54:3210–15.

    CAS  Google Scholar 

  2. Vink ETH, Rabago KR, Glassner DA, Gruber PR. Applications of life cycle assessment to NatureWorks™ polylactide (PLA) production. Polym Degrad Stabil. 2003;80:403–19.

    CAS  Google Scholar 

  3. Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4:835–64.

    CAS  PubMed  Google Scholar 

  4. Doi Y. Microbial polyesters. New York: VCH Publishers; 1990.

    Google Scholar 

  5. Lenz RW, Marchessault RH. Bacterial polyesters:biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules. 2005;6:1–8.

    CAS  PubMed  Google Scholar 

  6. Iwata T. Strong fibers and films of microbial polyesters. Macromol Biosci. 2005;5:689–701.

    CAS  PubMed  Google Scholar 

  7. Funabashi M, Ninomiya F, Kunioka M. Biodegradability evaluation of polymers by ISO 14855-2. Int J Mol Sci. 2009;10:3635–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yagi H, Ninomiya F, Funabashi M, Kunioka M. Anaerobic biodegradation tests of poly(lactic acid) under mesophilic and thermophilic conditions using a new evaluation system for methane fermentation in anaerobic sludge. Int J Mol Sci. 2009;10:3824–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. De Koning GJM, Lemstra PJ. Crystallization phenomena in bacteria poly[(R)-3-hydroxybutyrate]: 2. Embrittlement and rejuvenation. Polymer. 1993;34:4089–94.

    Google Scholar 

  10. Scandola M, Ceccorulli G, Pizzoli M. The physical aging of bacterial poly(d-β-hydroxybutyrate). Macromol Chem Rapid Commun. 1989;10:47–50.

    CAS  Google Scholar 

  11. Gordeyev SA, Nekrasov YPJ. Processing and mechanical properties of oriented poly(beta-hydroxybutyrate) fibers. Mater Sci Lett. 1999;18:1691–2.

    CAS  Google Scholar 

  12. Schmack G, Jehnichen D, Vogel R, Tandler BJ. Biodegradable fibers of poly(3-hydroxybutyrate) produced by high-speed melt spinning and spin drawing. Polym Sci Part B Polym Phys. 2000;38:2841–50.

    CAS  Google Scholar 

  13. Yamane H, Terao K, Hiki S, Kimura Y. Mechanical properties and higher order structure of bacterial homo poly(3-hydroxybutyrate) melt spun fibers. Polymer. 2001;42:3241–8.

    CAS  Google Scholar 

  14. Iwata T, Aoyagi Y, Fujita M, Yamane H, Doi Y, Suzuki Y, et al. Processing of a strong biodegradable poly[(R)-3-hydroxybutyrate] fiber and a new fiber structure revealed by micro-beam X-ray diffraction with synchrotron radiation. Macromol Rapid Commun. 2004;25:1100–4.

    CAS  Google Scholar 

  15. Tanaka T, Yabe T, Teramachi S, Iwata T. Mechanical properties and enzymatic degradation of poly[(R)-3-hydroxybutyrate] fibers stretched after isothermal crystallization near Tg. Polym Degrad Stabil. 2007;92:1016–24.

    CAS  Google Scholar 

  16. Kabe T, Tsuge T, Hikima T, Takata M, Takemura A, Iwata T. Processing, mechanical properties, and structure analysis of melt-spun fibers of P(3HB)/UHMW-P(3HB) identical blend. In: Smith PB, Gross RA, editors. ACS Symposium Series: Biobased monomers, polymers, and materials, vol. 1105. American Chemical Society; 2012. p. 63–75.

  17. Tanaka T, Fujita M, Takeuchi A, Suzuki Y, Uesugi K, Ito K. et al. Formation of highly ordered structure in poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] high-strength fibers. Macromolecules. 2006;39:2940–6.

    CAS  Google Scholar 

  18. Tanaka T, Nagasaki K, Teramachi S, Iwata T. The preparation of high-strength P(3HB-co-3HH) fibers stretched after isothermal crystallization and analysis of formation mechanism of small crystal nuclei. Fiber Prepr Jpn. 2007;62:103.

    Google Scholar 

  19. Kabe T, Hongo C, Tanaka T, Hikima T, Takata M, Iwata T. High tensile strength fiber of poly[(R)‐3‐hydroxybutyrate‐co‐(R)‐3‐hydroxyhexanoate] processed by two‐step drawing with intermediate annealing. J Appl Polym Sci. 2015;132:41258.

    Google Scholar 

  20. Yamamoto T, Kimizu M, Kikutani T, Furuhashi Y, Cakmak M. The effect of drawing and annealing conditions on the structure and properties of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers. Int Polym Process. 1997;12:29–37.

    CAS  Google Scholar 

  21. Jikihara Y, Saito T, Yamane H. Effect of thermal history on the crystallization behavior of bacterial poly(3-hydroxybutyrate-co-hydroxyhexanoate) and the cold drawability of melt spun fibers. Sen’i Gakkaishi (Jpn). 2006;62:115–22.

    CAS  Google Scholar 

  22. Omura T, Maehara A, Kabe T, Iwata T. Development of new melt-spinning method for microbial polyesters and high ordered structural analysis with synchrotron radiation. Fiber Prepr Jpn. 2020;2A08.

  23. Perret E, Reifle FA, Gooneie A, Chen K, Selli F, Hufenus R. Structural response of melt-spun poly(3-hydroxybutyrate) fibers to stress and temperature. Polymer. 2020;197:122503.

    CAS  Google Scholar 

  24. Okamura K, Marchessault RH. X-Ray structure of poly-β-hydroxybutyrate. In: Ramachandran CN, editor. Conformation of biopolymers, vol. 2. New York: Academic; 1967. p. 709–20.

  25. Yokouchi M, ChataniY, Tadokoro H, Teranishi K, Tani H. Structural studies of polyesters. 5. Molecular and crystal structure of optically active and racemic poly(β-hydroxybutyrate). Polymer. 1973;14:267–72.

    CAS  Google Scholar 

  26. Orts WJ, Marchessault RH, Bluhm TL, Hamer GK. Observation of strain-induced beta form in poly(beta-hydroxyalkanoates). Macromolecules. 1990;23:5368–70.

    CAS  Google Scholar 

  27. Iwata T, Tsunoda K, Aoyagi Y, Kusaka S, Yonezawa N, Doi Y. Mechanical properties of uniaxially cold-drawn films of poly([R]-3-hydroxybutyrate). Polym Degrad Stabil. 2003;79:217–24.

    CAS  Google Scholar 

  28. Iwata T, Fujita M, Aoyagi Y, Doi Y, Fujisawa T. Time-resolved X-ray diffraction study on poly[(R)-3-hydroxybutyrate] films during two-step-drawing: generation mechanism of planar zigzag structure. Biomacromolecules. 2005;6:1803–9.

    CAS  PubMed  Google Scholar 

  29. Nishiyama Y, Tanaka T, Yamazaki T, Iwata T. 2D NMR observation of strain-induced β-form in poly[(R)-3-hydroxybutyrate]. Macromolecules. 2006;39:4086–92.

    CAS  Google Scholar 

  30. Kabe T, Tanaka T, Marubayashi H, Hikima T, Tanaka M, Iwata T. Investigating thermal properties of and melting-induced structural changes in cold-drawn P(3HB) films with α- and β-structures using real-time X-ray measurements and high-speed DSC. Polymer. 2016;93:181–8.

    CAS  Google Scholar 

  31. Iwata T, Sato S, Park JW, Tanaka T. Beta structure and unique crystalline orientation analysis of PHB fibers and films. Abstracts of International Symposium on Biological Polyesters 2008. New Zealand, 2008, p. 101.

  32. Phongtamrug S, Tashiro K. X-Ray crystal structure analysis of poly(3-hydroxybutyrate) β-form and the proposition of a mechanism of the stress-induced α-to-β phase transition. Macromolecules. 2019;52:2995–3009.

    CAS  Google Scholar 

  33. Suzuki Y, Takeuchi A, Takano H, Ohigashi T, Takenaka T. Diffraction-limited microbeam with Fresnel zone plate optics in hard X-ray regions. Jpn J Appl Phys. 2001;40:1508–10.

    CAS  Google Scholar 

  34. Iwata T, Aoyagi Y, Tanaka T, Fujita M, Takeuchi A, Suzuki Y, et al. Microbeam X-ray diffraction and enzymatic degradation of poly[(R)-3-hydroxybutyrate] fibers with two kinds of molecular conformations. Macromolecules. 2006;17:5789–95.

    Google Scholar 

  35. Tanaka T, Uesugi K, Takeuchi A, Suzuki Y, Iwata T. Analysis of inner structure in high-strength biodegradable fibers by X-ray microtomography using synchrotron radiation. Polymer. 2007;48:6145–51.

    CAS  Google Scholar 

  36. Doi Y, Kanesawa Y, Tanahashi Y, Kumagai Y. Biodegradation of microbial polyesters in the marine environment. Polym Degrad Stabil. 1992;36:173–7.

    CAS  Google Scholar 

  37. Mukai K, Yamada K, Doi Y. Efficient hydrolysis of polyhydroxyalkanoates by Pseudomonas stutzeri YM1414 isolated from lake water. Polym Degrad Stabil. 1994;43:319–27.

    CAS  Google Scholar 

  38. Jendrossek D, Schirmer A, Schlegel HG. Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol. 1996;46:451–63.

    CAS  PubMed  Google Scholar 

  39. Kasuya K, Doi Y, Yano T. Enzymatic degradation of poly[(R)-3-hydroxybutyrate] by Comamonas testosteroni ATSU of soil bacterium. Polym Degrad Stabil. 1994;45:379–86.

    CAS  Google Scholar 

  40. Mergaert J, Anderson C, Wouters A, Swings J. In situ biodegradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in natural waters. Can J Microbiol. 1995;41:154–9.

    CAS  PubMed  Google Scholar 

  41. Kasuya K, Ohura T, Masuda K, Doi Y. Substrate and binding specificities of bacterial polyhydroxybutyrate depolymerases. Int J Biol Macromol. 1999;24:329–36.

    CAS  PubMed  Google Scholar 

  42. Kasuya K, Mitomo H, Nakahara M, Akiba A, Kudo T, Doi Y. Identification of a marine benthic P(3HB)-degrading bacterium isolate and characterization of its P(3HB) depolymerase. Biomacromolecules. 2000;1:194–201.

    CAS  PubMed  Google Scholar 

  43. Sekiguchi T, Ebishu A, Nomura K, Watanabe T, Enoki M, Kanehiro H. Biodegradation of several fibers submerged in deep sea water and isolation of biodegradable plastic degrading bacteria from deep ocean water. Nippon Suisan Gakkaishi (Jpn). 2009;75:1011–8.

    CAS  Google Scholar 

  44. Ohura T, Aoyagi Y, Takagi K, Yoshida Y, Kasuya K, Doi Y. Biodegradation of poly(3-hydroxyalkanoic acids) fibers and isolation of poly(3-hydroxybutyric acid)-degrading microorganisms under aquatic environments. Polym Degrad Stabil. 1999;63:23–9.

    CAS  Google Scholar 

  45. Uefuji M, Kasuya K, Doi Y. Enzymatic degradation of poly[(R)-3-hydroxybutyrate]: secretion and properties of PHB depolymerase from Pseudomonas stutzeri. Polym Degrad Stabil. 1997;58:275–81.

    CAS  Google Scholar 

  46. Tanio T, Fukui T, Shirakura Y, Saito T, Tomita K, Kaiho T, et al. An extracellular poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis. Eur J Biochem. 1982;124:71–7.

    CAS  PubMed  Google Scholar 

  47. Iwata T, Doi Y. Crystal structure and biodegradation of aliphatic polyester crystals. Macromol Chem Phys. 1999;200:2429–42.

    CAS  Google Scholar 

  48. Kumagai Y, Kanesawa Y, Doi Y. Enzymatic degradation of microbial poly(3‐hydroxybutyrate) films. Makromol Chem. 1992;193:53–7.

    CAS  Google Scholar 

  49. Abe H, Doi Y, Aoki H, Akehata T. Solid-state structures and enzymatic degradabilities for melt-crystallized films of copolymers of (R)-3-hydroxybutyric acid with different hydroxyalkanoic acids. Macromolecules. 1998;31:1791–7.

    CAS  Google Scholar 

  50. Hisano T, Kasuya K, Tezuka Y, Ishii N, Kobayashi T, Shiraki M, et al. The crystal structure of polyhydroxybutyrate depolymerase from Penicillium funiculosum provides insights into the recognition and degradation of biopolyesters. J Mol Biol. 2006;356:993–1004.

    CAS  PubMed  Google Scholar 

  51. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, et al. Advances in cellulose ester performance and application. Prog Polym Sci. 2001;26:1605–88.

    CAS  Google Scholar 

  52. Fordyce CR, Meyer IWA. Plasticizers for cellulose acetate and cellulose acetate butyrate. Ind Eng Chem. 1940;32:1053–60.

    CAS  Google Scholar 

  53. Enomoto-Rogers Y, Iio N, Takemura A, Iwata T. Synthesis and characterization of pullulan alkyl esters. Eur Polym J. 2015;66:470–7.

    CAS  Google Scholar 

  54. Danjo T, Enomoto Y, Shimada H, Nobukawa S, Yamaguchi M, Iwata T. Zero birefringence films of pullulan ester derivatives. Sci Rep. 2017;7:46342.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Togo A, Enomoto Y, Takemura A, Iwata T. Synthesis and characterization of dextran ester derivatives and their adhesive properties. J Wood Sci. 2019;65:1–8.

    Google Scholar 

  56. Marubayashi H, Yukinaka K, Enomoto-Rogers Y, Takemura A, Iwata T. Curdlan ester derivatives: synthesis, structure, and properties. Carbohydr Polym. 2014;103:427–33.

    CAS  PubMed  Google Scholar 

  57. Gan H, Enomoto Y, Kabe T, Ishii D, Hikima T, Takata M, et al. Synthesis, properties and molecular conformation of paramylon ester derivatives. Polym Degrad Stabil. 2017;145:142–9.

    CAS  Google Scholar 

  58. Gan H, Kabe T, Iwata T. Manufacture, characterization, and structure analysis of melt-spun fibers derived from paramylon esters. J Fiber Sci Technol. 2020;76:151–60.

    Google Scholar 

  59. Danjo T, Iwata T. Syntheses of cellulose branched ester derivatives and their properties and structure analyses. Polymer. 2018;137:358–63.

    CAS  Google Scholar 

  60. Zhai W, Danjo T, Iwata T. Synthesis and physical properties of Curdlan branched ester derivatives. J Polym Res. 2018;25:181.

    Google Scholar 

  61. Fukata Y, Kimura S, Iwata T. Synthesis of α-1,3-glucan branched ester derivatives with excellent thermal stability and thermoplasticity. Polym Degrad Stabil. 2020;177:109130.

    CAS  Google Scholar 

  62. Puanglek S, Kimura S, Enomoto-Rogers Y, Kabe T, Yoshida M, Wada M, et al. In vitro synthesis of linear α-1,3-glucan and chemical modification to ester derivatives exhibiting outstanding thermal properties. Sci Rep. 2016;6:30479.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Puanglek S, Kimura S, Iwata T. Thermal and mechanical properties of tailor-made unbranched α-1,3-glucan esters with various carboxylic acid chain length. Carbohydr Polym. 2017;169:245–54.

    CAS  PubMed  Google Scholar 

  64. Harada T, Misaki A, Saito H. Curdlan: a bacterial gel-forming β-1, 3-glucan. Arch Biochem Biophys. 1968;124:292–8.

    CAS  PubMed  Google Scholar 

  65. Clarke AE, Stone BA. Structure of the paramylon from Euglena gracilis. Biochim Biophys Acta. 1960;44:161–3.

    CAS  PubMed  Google Scholar 

  66. Shibakami M, Tsubouchi G, Hayashi M. Thermoplasticization of euglenoid β-1,3-glucans by mixed esterification. Carbohydr Polym. 2014;105:90–6.

    CAS  PubMed  Google Scholar 

  67. Shibakami M, Tsubouchi G, Sohma M, Hayashi M. One-pot synthesis of thermoplastic mixed paramylon esters using trifluoroacetic anhydride. Carbohydr Polym. 2015;119:1–7.

    CAS  PubMed  Google Scholar 

  68. Shibakami M, Sohma M. Synthesis and thermal properties of paramylon mixed esters and optical, mechanical, and crystal properties of their hot-pressed films. Carbohydr Polym. 2017;155:416–24.

    CAS  PubMed  Google Scholar 

  69. Enomoto-Rogers Y, Ohmomo Y, Iwata T. Syntheses and characterization of konjac glucomannan acetate and their thermal and mechanical properties. Carbohydr Polym. 2013;92:1827–34.

    CAS  PubMed  Google Scholar 

  70. Danjo T, Enomoto-Rogers Y, Takemura A, Iwata T. Syntheses of glucomannan acetate butyrate mixed esters and their thermal and mechanical properties. Polym Degrad Stabil. 2014;109:373–8.

    CAS  Google Scholar 

  71. Leathers TD. Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol. 2003;62:468–73.

    CAS  PubMed  Google Scholar 

  72. Singh RS, Saini GK, Kennedy JF. Pullulan: microbial sources, production and applications. Carbohydr Polym. 2008;73:515–31.

    CAS  PubMed  Google Scholar 

  73. Farris S, Unalan IU, Introzzi L, Fuentes‐Alventosa JM, Cozzolino CA. Pullulan‐based films and coatings for food packaging: present applications, emerging opportunities, and future challenges. J Appl Polym Sci. 2014;131:40539.

    Google Scholar 

  74. Shibata M, Asahina M, Teramoto N, Yosomiya R. Chemical modification of pullulan by isocyanate compounds. Polymer. 2001;42:59–64.

    CAS  Google Scholar 

  75. Shibata M, Nozawa R, Teramoto N, Yosomiya R. Synthesis and properties of etherified pullulans. Eur Polym J. 2002;38:497–501.

    CAS  Google Scholar 

  76. De Groot CJ, Van Luyn MJ, Van Dijk-Wolthuis WN, Cadée JA, Plantinga JA, Den Otter W, et al. In vitro biocompatibility of biodegradable dextran-based hydrogels tested with human fibroblasts. Biomaterials. 2001;22:1197–203.

    PubMed  Google Scholar 

  77. Togo A, Enomoto Y, Takemura A, Iwata T. Synthesis of biomass-based adhesives derived from dextran ester derivatives. J Adhes Soc Jpn. 2019;55:315–22.

    CAS  Google Scholar 

  78. Johnston IR. The composition of the cell wall of Aspergillus niger. Biochem J. 1965;96:651–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Choma A, Wiater A, Komaniecka I, Paduch R, Pleszczyńska M, Szczodrak J. Chemical characterization of a water insoluble (1→3)-α-d-glucan from an alkaline extract of Aspergillus wentii. Carbohydr Polym. 2013;91:603–8.

    CAS  PubMed  Google Scholar 

  80. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986;50:353–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Simpson CL, Cheetham NW, Jacques NA. Four glucosyltransferases, gtfJ, gtfK, gtfL and gtfM, from Streptococcus salivarius ATCC 25975. Microbiology. 1995;141:1451–60.

    CAS  PubMed  Google Scholar 

  82. Simpson CL, Giffard PM, Jacques NA. Streptococcus salivarius ATCC 25975 possesses at least two genes coding for primer-independent glucosyltransferases. Infect Immune. 1995;63:609–21.

    CAS  Google Scholar 

  83. Giffard PM, Simpson CL, Milward CP, Jacques NA. Molecular characterization of a cluster of at least two glucosyltransferase genes in Streptococcus salivarius ATCC 25975. Microbiology. 1991;137:2577–93.

    CAS  Google Scholar 

  84. Mark JE (Ed.). Polymer data handbook. 2nd ed. New York: Oxford University Press; 2009.

  85. Kobayashi K, Hasegawa T, Kusumi R, Kimura S, Yoshida M, Sugiyama J, et al. Characterization of crystalline linear (1→3)-α-D-glucan synthesized in vitro. Carbohydr Polym. 2017;177:341–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Grant-in-Aid for Scientific Research (A) (26248044, 19H00908), Grant-in-Aid for challenging Exploratory Research (15K13778, 18K19104), “White Biotechnology” in JST-ALCA (JPMJAL1502), NEDO project (19101209), and the “Demonstration project for plastics resource circulation system for decarbonized society” of the Ministry of the Environment. The synchrotron radiation experiments were mostly performed using BL03XU (2017A1440, 2018A7232, 2019A7234), BL40B2 (2019A1213), BL45XU, BL47XU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadahisa Iwata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iwata, T., Gan, H., Togo, A. et al. Recent developments in microbial polyester fiber and polysaccharide ester derivative research. Polym J 53, 221–238 (2021). https://doi.org/10.1038/s41428-020-00404-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00404-8

This article is cited by

Search

Quick links