Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards hydrophilic piezoelectric poly-L-lactide films: optimal processing, post-heat treatment and alkaline etching

Abstract

Piezoelectric poly-L-lactide (PLLA) films are highly applicable for designing soft electronics in biomedicine. However, due to a lack of reactive side-chain groups, PLLA is characterized by a chemically inert and hydrophobic surface. Although compatible with biological environments, this polymer has very poor interactions with cells. This work is the first report on piezoelectric PLLA films with hydrophilic surfaces. We performed a systematic study that correlated processing parameters (drawing ratio, drawing temperature, drawing rate) with postprocessing steps (annealing and etching) to produce active, hydrophilic, piezoelectric PLLA surfaces. During processing, the optimal drawing ratio, temperature and rate increase the crystallinity and crystallite size and provide chain orientation. Postprocessing annealing and etching afford further improvements in structural properties and optimized surface characteristics. Consequently, the resulting PLLA films possess piezoelectric properties in combination with hydrophilic surfaces and specifically patterned topography. Using this approach, we designed active PLLA films with high potential for strong interactions with cells in further biomedical applications, including exploring the effect of piezoelectricity on cell proliferation. This study provides novel insight into designing synthetic piezoelectric polymers with significantly improved interactions with cells and tissues, which are particularly important for their application in biomedicine.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Curry EJ, Ke K, Chorsi MT, Wrobel KS, Miller AN, Patel A, Kim I, Feng J, Yue L, Wu Q, Kuo C-L, Lo KW-H, Laurencin CT, Ilies H, Purohit PK, Nguyen TD. Biodegradable piezoelectric force sensor. Proc Natl Acad Sci USA. 2018;115:909–14. https://doi.org/10.1073/pnas.1710874115.

    CAS  Article  PubMed  Google Scholar 

  2. Lagarón J-M (editor). Polylactic acid (PLA) nanocomposites for food packaging applications. In: Multifunctional and nanoreinforced polymers for food packaging, Woodhead Publishing, Cambridge, UK; 2011. p. 485–97. https://doi.org/10.1533/9780857092786.4.485.

    Chapter  Google Scholar 

  3. Miyazaki H, Kinoshita M, Saito A, Fujie T, Kabata K, Hara E, Satoshi O, Takeoka S, Saitoh D. An ultrathin poly(L-lactic acid) nanosheet as a burn wound dressing for protection against bacterial infection. Wound Repair Regen. 2012;20:573–9. https://doi.org/10.1111/j.1524-475X.2012.00811.x.

    Article  PubMed  Google Scholar 

  4. Ikada Y, Shikinami Y, Hara Y, Tagawa M, Fukada E. Enhancement of bone formation by drawn poly(L-lactide). J Biomed Mater Res. 1996;30:553–8. https://doi.org/10.1002/(SICI)1097-4636(199604)30:4<553:AID-JBM14>3.0.CO;2-I.

    CAS  Article  Google Scholar 

  5. Abd Alsaheb RA, Aladdin A, Othman NZ, Abd Malek R, Leng OM, Aziz R, Enshasy HAEl. Recent applications of polylactic acid in pharmaceutical and medical industries. J Chem Pharm Res. 2015;7:51–63.

    CAS  Google Scholar 

  6. Lotz B. Crystal polymorphism and morphology of polylactides. In: Di Lorenzo ML, Androsch R, editors. Synthesis, structure and properties of poly(lactic acid). Springer, Cham, Switzerland; 2017. p. 273–302. https://doi.org/10.1007/12_2016_15.

    Chapter  Google Scholar 

  7. Takahashi K, Sawai D, Yokoyama T, Kanamoto T. Crystal transformation from the a- to the b-form upon tensile drawing of poly (L-lactic acid), 45 (2004) 4969–76. https://doi.org/10.1016/j.polymer.2004.03.108.

    CAS  Article  Google Scholar 

  8. Chen X, Kalish J, Hsu SL. Structure evolution of a α’-phase poly(lactic acid). J Polym Sci Part B Polym Phys. 2011;49:1446–54. https://doi.org/10.1002/polb.22327.

    CAS  Article  Google Scholar 

  9. Fukada E. History and recent progress in piezoelectric polymers. IEEE Trans Ultrason, Ferroelectr, Freq Control. 2000;47:1277–90.

    CAS  Article  Google Scholar 

  10. Lovell CS, Fitz-Gerald JM, Park C. Decoupling the effects of crystallinity and orientation on the shear piezoelectricity of polylactic acid. J Polym Sci Part B Polym Phys. 2011;49:1555–62. https://doi.org/10.1002/polb.22345.

    CAS  Article  Google Scholar 

  11. Singh AA, Wei J, Herrera N, Geng S, Oksman K. Synergistic effect of chitin nanocrystals and orientations induced by solid-state drawing on PLA-based nanocomposite tapes. Compos Sci Technol. 2018;162:140–5. https://doi.org/10.1016/j.compscitech.2018.04.034.

    CAS  Article  Google Scholar 

  12. Singh AA, Geng S, Herrera N, Oksman K. Aligned plasticized polylactic acid cellulose nanocomposite tapes: effect of drawing conditions. Compos Part A Appl Sci Manuf 2018;104:101–7. https://doi.org/10.1016/j.compositesa.2017.10.019.

    CAS  Article  Google Scholar 

  13. Tajitsu Y. Basic study of controlling piezoelectric motion of chiral polymeric fiber. Ferroelectrics. 2009;389:83–94. https://doi.org/10.1080/00150190902987871.

    CAS  Article  Google Scholar 

  14. Fukada E. New piezoelectric polymers. Jpn J Appl Phys. 1998;37:2775–80. https://doi.org/10.1143/JJAP.37.2775.

    CAS  Article  Google Scholar 

  15. Zareidoost A, Yousefpour M, Ghaseme B, Amanzadeh A. The relationship of surface roughness and cell response of chemical surface modification of titanium. J Mater Sci Mater Med. 2013;23:1479–88. https://doi.org/10.1007/s10856-012-4611-9.

    Article  Google Scholar 

  16. Tandon B, Blaker JJ, Cartmell SH. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater. 2018;73:1–20. https://doi.org/10.1016/j.actbio.2018.04.026.

    CAS  Article  PubMed  Google Scholar 

  17. Tham CY, Abdul Hamid ZA, Ahmad Z, Ismail H. Surface modification of poly(lactic acid) (PLA) via alkaline hydrolysis degradation. Adv Mater Res. 2014;970:324–7. https://doi.org/10.4028/www.scientific.net/AMR.970.324.

    Article  Google Scholar 

  18. Yanagida H, Okada M, Masuda M, Ueki M, Narama I, Kitao S, Koyama Y, Furuzono T, Takakuda K. Cell adhesion and tissue response to hydroxyapatite nanocrystal-coated poly (L -lactic acid) fabric. J Biosci. 2009;108:235–43. https://doi.org/10.1016/j.jbiosc.2009.04.003.

    CAS  Article  Google Scholar 

  19. Adar F, Noether H. Raman microprobe spectra of spin-oriented and drawn filaments of poly (ethylene terephthalate). Polymers. 1985;26:1935–43. https://doi.org/10.1016/0032-3861(85)90171-5.

    CAS  Article  Google Scholar 

  20. Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev. 2016;107:367–92. https://doi.org/10.1016/j.addr.2016.06.012.

    CAS  Article  PubMed  Google Scholar 

  21. Bernard F, Gimeno L, Viala B, Gusarov B, Cugat O. Direct piezoelectric coefficient measurements of PVDF and PLLA under controlled strain and stress. Proceedings. 2017;1:335 https://doi.org/10.3390/proceedings1040335.

    Article  Google Scholar 

  22. Turner JF, Riga A, O’Connor A, Zhang J, Collis J. Characterization of drawn and undrawn poly-L-lactide films by differential scanning calorimetry. J Therm Anal Calorim. 2004;75:257–68. https://doi.org/10.1023/B:JTAN.0000017347.08469.b1.

    CAS  Article  Google Scholar 

  23. Chen Z, Zhang S, Wu F, Yang W, Liu Z, Yang M. Motion mode of poly(lactic acid) chains in film during strain-induced crystallization. J Appl Polym Sci. 2016;133:1–10. https://doi.org/10.1002/app.42969.

    CAS  Article  Google Scholar 

  24. Larrañaga A, Lizundia E. Strain-induced crystallization. In: Thomas S, Arif PM, Gowd B, Kalarikkal N, editors. Crystallization in multiphase polymer systems. 1st ed., Elsevier, Amsterdam, Netherlands; 2018. p. 471–508. https://doi.org/10.1016/B978-0-12-809453-2.00015-3.

    Chapter  Google Scholar 

  25. Yoshida M, Onogi T, Onishi K, Inagaki T, Tajitsu Y. High piezoelectric performance of poly(lactic acid) film manufactured by solid-state extrusion. Jpn J Appl Phys. 2014;53:PC02-1–PC02-6. https://doi.org/10.7567/JJAP.53.09PC02.

    CAS  Article  Google Scholar 

  26. Kister G, Cassanas G, Vert M, Pauvert B, Térol A. Vibrational analysis of poly(L‐lactic acid). J Raman Spectrosc. 1995;26:307–11. https://doi.org/10.1002/jrs.1250260409.

    CAS  Article  Google Scholar 

  27. Vasanthan N, Ly O. Effect of microstructure on hydrolytic degradation studies of poly (l-lactic acid) by FTIR spectroscopy and differential scanning calorimetry. Polym Degrad Stab. 2009;94:1364–72. https://doi.org/10.1016/j.polymdegradstab.2009.05.015.

    CAS  Article  Google Scholar 

  28. Wang Y, Zhang H, Li M, Cao W, Liu C, Shen C. Orientation and structural development of semicrystalline poly(lactic acid) under uniaxial drawing assessed by infrared spectroscopy and X-ray diffraction. Polym Test. 2015;41:163–71. https://doi.org/10.1016/j.polymertesting.2014.11.010.

    CAS  Article  Google Scholar 

  29. Rangari D, Vasanthan N. Study of strain-induced crystallization and enzymatic degradation of drawn poly (l-lactic acid)(PLLA) films. Macromolecules. 2012;45:7397–403. https://doi.org/10.1021/ma301482j.

    CAS  Article  Google Scholar 

  30. Meaurio E, Zuza E, López-Rodríguez N, Sarasua JR. Conformational behavior of poly(L-lactide) studied by infrared spectroscopy. J Phys Chem B. 2006;110:5790–5800. https://doi.org/10.1021/jp055203u.

    CAS  Article  PubMed  Google Scholar 

  31. Quéré D. Rough ideas on wetting. Physica A. 2002;313:32–46.

    Article  Google Scholar 

  32. Sun SP, Wei M, Olson JR, Shaw MT. Alkali etching of a poly(lactide) fiber, ACS Appl Mater Interfaces. 2009. https://doi.org/10.1021/am900227f.

    CAS  Article  Google Scholar 

  33. Ochiai T, Eiichi Fukada. Electromechanical properties of poly-L-lactic acid. Jpn J Appl Phys. 1998;37:3374–6. https://doi.org/10.1143/JJAP.37.3374.

    CAS  Article  Google Scholar 

  34. Meng S, Rouabhia M, Zhang Z. Electrical stimulation in tissue regeneration, In: Appl Biomed Eng. 2011. https://doi.org/10.5772/18874.

    Google Scholar 

  35. Wang ET, Zhao M. Regulation of tissue repair and regeneration by electric fields. Chin J. Traumatol.(English Ed.) 2010. https://doi.org/10.3760/cma.j.issn.1008-1275.2010.01.011.

Download references

Acknowledgements

The authors are grateful to David Fabijan and Damjan Vengust, Advanced Materials Department, Jozef Stefan Institute, for the piezoelectric and Raman spectroscopy measurements, respectively. We also acknowledge the CENN Nanocenter for the use of the NTEGRA Spectra I confocal Raman spectrometer. The work has been funded by the Slovenian Research Agency (ARRS) (grants J2-8169 and PR-08338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Vukomanović.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Udovč, L., Spreitzer, M. & Vukomanović, M. Towards hydrophilic piezoelectric poly-L-lactide films: optimal processing, post-heat treatment and alkaline etching. Polym J 52, 299–311 (2020). https://doi.org/10.1038/s41428-019-0281-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-019-0281-5

Search

Quick links