Atypical rheology and spinning behavior of poly(vinyl alcohol) in a nonaqueous solvent


Electrospinning poly(vinyl alcohol), which is an important water-soluble biopolymer, using an organic solvent, such as dimethyl sulfoxide (DMSO), is particularly important for applications such as the controlled release of drugs with poor solubility in water. Since the nature of the solvent can greatly influence the morphology of the nanofibers and hence their bio-applicability, the rheology and electrospinning behavior of PVA in DMSO were investigated and compared with those in water. The viscosity, storage modulus and elasticity were found to be higher for PVA solutions in DMSO than in water for the same concentration of PVA. However, the fiber diameter obtained from the PVA-DMSO system was significantly lower. Although a linear correlation between the fiber diameter and elasticity could be established for the two solvents, their slopes were different. In a further investigation, a single linear equation could be determined for the two systems to give the relationship between the diameter and the number of entanglements per chain, suggesting that elasticity arising from chain entanglements was the key factor governing the fiber diameter.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Kanawung K, Panitchanapan K, Puangmalee S, Utok W, Kreua-ongarjnukool N, Rangkupan R, et al. Preparation and characterization of Polycaprolactone/Diclofenac Sodium and Poly(vinyl alcohol)/Tetracycline Hydrochloride fiber mats and their release of the model drugs. Polym J. 2007;39:369–78.

    CAS  Article  Google Scholar 

  2. 2.

    Zeng J, Aigner A, Czubayko F, Kissel T, Wendorff JH, Greiner A. Poly(vinyl alcohol) nanofibres by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules. 2005;6:1484–8.

    CAS  Article  Google Scholar 

  3. 3.

    Zhou Y, Yang D, Chen X, Xu Q, Lu F, Nie J. Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules. 2008;9:349–54.

    CAS  Article  Google Scholar 

  4. 4.

    Kang DH, Kim D, Wang S, Song D, Yoon MH. Water-insoluble, nanocrystalline, and hydrogel fibrillar scaffolds for biomedical applications. Polym J. 2018;50:637–47.

    CAS  Article  Google Scholar 

  5. 5.

    Park JC, Ito T, Kim KO, Kim KW, Kim BS, Khil MS, et al. Electrospun poly(vinyl alcohol) nanofibres: effects of degree of hydrolysis and enhanced water stability. Polym J. 2010;42:273–6.

    CAS  Article  Google Scholar 

  6. 6.

    Sousa AM, Souza HK, Uknalis J, Liu SC, Gonçalves MP, Liu L. Electrospinning of Agar/PVA aqueous solutions and its relation with rheological properties. Carbohyd Polym. 2015;115:348–55.

    CAS  Article  Google Scholar 

  7. 7.

    Supaphol P, Chuangchote S. On the electrospinning of poly(vinyl alcohol) nanofibre mats: a revisit. J Appl Polym Sci. 2008;108:969–78.

    CAS  Article  Google Scholar 

  8. 8.

    Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous pva produced by electrospinning. Mater Lett. 2004;58:493–7.

    CAS  Article  Google Scholar 

  9. 9.

    Li Q, Jia Z, Yang Y, et al. Preparation and properties of poly (vinyl alcohol) nanofibres by electrospinning. In: 2007 IEEE International Conference on Solid Dielectrics, Winchester, UK, 2007, p. 215–8.

  10. 10.

    Rosic R, Pelipenko J, Kristl J, Kocbek P, Bester-Rogac M, Baumgartner S. Physical characteristics of poly (vinyl alcohol) solutions in relation to electrospun nanofibre formation. Eur Polym J. 2013;49:290–8.

    CAS  Article  Google Scholar 

  11. 11.

    Papaneophytou CP, Mettou AK, Rinotas V, Douni E, Kontopidis GA. Solvent selection for insoluble ligands, a challenge for biological assay development: a tnf α/spd304 study. ACS Med Chem Lett. 2013;4:137–41.

    CAS  Article  Google Scholar 

  12. 12.

    Mano F, Aroso IM, Barreiros S, Borges JP, Reis RL, Duarte ARC, et al. Production of poly(vinyl alcohol) (pva) fibres with encapsulated natural deep eutectic solvent (NADES) using electrospinning. ACS Sustain. Chem Eng. 2015;3:2504–9.

    CAS  Google Scholar 

  13. 13.

    Hou Y, Chen C, Liu K, Tu Y, Zhang L, Li Y. Preparation of pva hydrogel with high-transparence and investigations of its transparent mechanism. RSC Adv. 2015;5:24023–30.

    CAS  Article  Google Scholar 

  14. 14.

    Kanaya T, Takahashi N, Takeshita H, Ohkura M, Nishida K, Kaji K. Structure and dynamics of poly(vinyl alcohol) gels in mixtures of dimethyl sulfoxide and water. Polym J. 2012;44:83–94.

    CAS  Article  Google Scholar 

  15. 15.

    Young TH, Chuang WY. Thermodynamic analysis on the cononsolvency of poly (vinyl alcohol) in water–dmso mixtures through the ternary interaction parameter. J Memb Sci. 2002;210:349–59.

    CAS  Article  Google Scholar 

  16. 16.

    Hoshino H, Okada S, Urakawa H, Kajiwara K. Gelation of poly(vinyl alcohol) in dimethyl sulfoxide/water solvent. Polym Bull. 1996;37:237–44.

    CAS  Article  Google Scholar 

  17. 17.

    Hong S, Huang H, Hong P. Effects of solvent adsorption on solution properties of poly (vinyl alcohol)/ dimethylsulfoxide / water ternary systems. Eur Polym J. 2009;45:1158–68.

    CAS  Article  Google Scholar 

  18. 18.

    Catalán J, Díaz C, García-Blanco F. Characterization of binary solvent mixtures of DMSO with water and other co-solvents. J Org Chem. 2001;66:5846–52.

    Article  Google Scholar 

  19. 19.

    Zhang P, Zhou T, He L, Zhang S, Sun J, Wang J, et al. Dispersion of multi-walled carbon nanotubes modified by rosemary acid into poly(vinyl alcohol) and preparation of their composite fibres. RSC Adv. 2015;5:55492–8.

    CAS  Article  Google Scholar 

  20. 20.

    Uyar T, Besenbacher F. Electrospinning of uniform polystyrene fibres: the effect of solvent conductivity. Polym. 2008;49:5336–43.

    CAS  Article  Google Scholar 

  21. 21.

    Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, et al. Electrospun cellulose acetate fibres: Effect of solvent system on morphology and fibre diameter. Cellulose. 2007;14:563–75.

    CAS  Article  Google Scholar 

  22. 22.

    Sun Z, Deitzel JM, Knopf J, Chen X, Gillespie JW. The effect of solvent dielectric properties on the collection of oriented electrospun fibres. J Appl Polym Sci. 2012;125:2585–94.

    CAS  Article  Google Scholar 

  23. 23.

    Eda G, Liu J, Shivkumar S. Solvent effects on jet evolution during electrospinning of semi-dilute polystyrene solutions. Eur Polym J. 2007;43:1154–67.

    CAS  Article  Google Scholar 

  24. 24.

    Dreval VE, Malkin AYA, Vinograoov GV. Effect of the solvent nature on the properties of concentrated solutions of various polymers. Eur Polym J. 1973;9:85–99.

    CAS  Article  Google Scholar 

  25. 25.

    Isono Y, Nagasawa M. Solvent effects on rheological properties of polymer solutions. Macromolecules. 1980;13:862–7.

    CAS  Article  Google Scholar 

  26. 26.

    Gandhi KS, Williams MC. Effect of solvent character on polymer entanglements. J Polym Sci. 1971;35:2721–5.

    Google Scholar 

  27. 27.

    Kong L, Ziegler GR. Role of molecular entanglements in starch fibre formation by electrospinning. Biomacromolecules. 2012;13:2247–53.

    CAS  Article  Google Scholar 

  28. 28.

    Takahashi N, Kanaya T, Nishida K, Kaji K. Effects of cononsolvency on gelation of poly(vinyl alcohol) in mixed solvents of dimethyl sulfoxide and water. Polymer. 2003;44:4075–8.

    CAS  Article  Google Scholar 

  29. 29.

    Gupta D, Jassal M, Agrawal AK. The electrospinning behavior of poly(vinyl alcohol) in dmso–water binary solvent mixtures. RSC Adv. 2016;6:102947–55.

    CAS  Article  Google Scholar 

  30. 30.

    Basu S, Gogoi N, Sharma S, Jassal M, Agrawal AK. Role of elasticity in control of diameter of electrospun pan nanofibres. Fibres Polym. 2013;14:950–6.

    CAS  Article  Google Scholar 

  31. 31.

    Basu S, Jassal M, Agrawal AK. Concept of minimum electrospinning voltage (MEV) in electrospinning of PAN-DMF system: effect of distance. J Text Insti. 2013;104:158–63.

    Article  Google Scholar 

  32. 32.

    Basu S, Agrawal AK, Jassal M. Concept of minimum electrospinning voltage in electrospinning of polyacrylonitrile N,N-dimethylformamide system. J Appl Polym Sci. 2011;122:856–66.

    CAS  Article  Google Scholar 

  33. 33.

    Gupta D, Jassal M, Agrawal AK. Electrospinning of poly(vinyl alcohol)-based boger fluids to understand the role of elasticity on morphology of nanofibres. Ind Eng Chem Res. 2015;54:1547–54.

    CAS  Article  Google Scholar 

  34. 34.

    McKee MG, Wilkes GL, Colby RH, Long TE. Correlations of solution rheology with electrospun fibre formation of linear and branched polyesters. Macromolecules. 2004;37:1760–7.

    CAS  Article  Google Scholar 

  35. 35.

    Graessley WW. Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power. Polymer. 1980;21:258–62.

    CAS  Article  Google Scholar 

  36. 36.

    Colby RH, Fetters LJ, Funk WG, Graessley WW. Effect of concentration and thermodynamic interaction on the viscoelastic properties of polymer solutions. Macromolecules. 1991;24:3873–82.

    CAS  Article  Google Scholar 

  37. 37.

    Shenoy SL, Bates WD, Frisch HL, Wnek GE. Role of chain entanglements on fibre formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer. 2005;46:3372–84.

    CAS  Article  Google Scholar 

  38. 38.

    Jackson KP, Walters K, Williams RW. A rheometrical study of boger fluid. J Non-Newton Fluid. 1984;14:173–88.

    CAS  Article  Google Scholar 

  39. 39.

    Gao H, He J, Yang R, Yang L. Characteristic rheological features of high concentration PVA solutions in water with different degrees of polymerization. J Appl Polym Sci. 2010;116:2734–41.

    CAS  Google Scholar 

  40. 40.

    Cho YH, Dan KS, Kim BC. Effects of dissolution temperature on the rheologicalproperties of polyvinyl alchol solutions in dimethyl sulfoxide. Korea-Aust Rheol J. 2008;20:73–7.

    Google Scholar 

  41. 41.

    Tao J, Shivkumar S. Molecular weight dependent structural regimes during the electrospinning of PVA. Mater Lett. 2007;61:2325–8.

    CAS  Article  Google Scholar 

  42. 42.

    Peppas NA, Merrill EW. Differential scanning calorimetry of crystalline PVA hydrogels. J Appl Polym Sci. 1976;20:1457–65.

    CAS  Article  Google Scholar 

Download references


We acknowledge partial financial support provided by the Department of Science and Technology under various research grants.

Author information



Corresponding author

Correspondence to Manjeet Jassal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, D., Jassal, M. & Agrawal, A.K. Atypical rheology and spinning behavior of poly(vinyl alcohol) in a nonaqueous solvent. Polym J 51, 883–894 (2019).

Download citation

Further reading