Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nucleation effects of high molecular weight polymer additives on low molecular weight gels

Abstract

Polymeric species have been introduced to low molecular weight gelators to tailor their nucleation and rheological behavior. This work combines polymers and molecular gels (MGs) in a different manner by using polymers as the major component in a solution. Additionally, using polymers above their entanglement molecular weight is a step towards building polymer–MG composite materials. Specifically, a cholesterol-pyridine (CP) molecular gel was introduced to poly(ethylene oxide-co-epichlorohydrin) (EO-EPI) and poly(vinyl acetate) (PVAc), which have dissimilar chain conformations in anisole. Dynamic light scattering, scanning electron microscopy, and temperature-dependent small- and wide-angle X-ray studies were utilized to investigate the influence of the solution properties of high molecular weight EO-EPI and PVAc on the CP network structure. The collapsed chain conformation and aggregation of EO-EPI led to isolated, branched CP fiber networks, resulting in unexpectedly high dissociation temperatures. In contrast, PVAc gels displayed transient fiber networks, as evidenced by fiber wrapping and bundling. Cooperative interactions between PVAc and CP resulted in gels with dissociation temperatures higher than those of pure CP gels. These structural characteristics significantly influenced the gel mechanics. The collapsed chain conformation of EO-EPI led to weaker, more viscous gels, and the freely extended PVAc chain conformation led to interconnected, elastic gels independent of the molecular gel concentration.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Dagnon KL, Shanmuganathan K, Weder C, Rowan SJ. Water-triggered modulus changes of cellulose nanofiber nanocomposites with hydrophobic polymer matrices. Macromolecules. 2012;45:4707–15.

    Article  CAS  Google Scholar 

  2. 2.

    Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer. 2008;49:3187–204.

    Article  CAS  Google Scholar 

  3. 3.

    Luo H, Hu J, Zhu Y. Path-dependent and selective multi-shape recovery of a polyurethane/cellulose-whisker nanocomposite. Mater Lett. 2012;89:172–5.

    Article  CAS  Google Scholar 

  4. 4.

    Wu T, Frydrych M, Kelly KO, Chen B. Poly(glycerol sebacate urethane)–cellulose nanocomposites with water-active shape-memory effects. Biomacromolecules. 2014;15:2663–71.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63:2223–53.

    Article  CAS  Google Scholar 

  6. 6.

    Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I. Experimental trends in polymer nanocomposites—a review. Mater Sci Eng A. 2005;393:1–11.

    Article  CAS  Google Scholar 

  7. 7.

    Cudjoe E, et al. Biomimetic reversible heat-stiffening polymer nanocomposites. ACS Cent Sci. 2017;3:886–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Sattar R, Kausar A, Siddiq M. Advances in thermoplastic polyurethane composites reinforced with carbon nanotubes and carbon nanofibers: a review. J Plast Film Sheet. 2014;31:186–224.

    Article  CAS  Google Scholar 

  9. 9.

    De Leon AC, et al. High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym. 2016;103:141–55.

    Article  CAS  Google Scholar 

  10. 10.

    McNally, T, Potschke, P. Polymer-carbon nanotube composites. Woodhead Publishing Limited: Cambridge; 2011.

  11. 11.

    Stone DA, Wilusz E, Zukas W, Wnek G, Korley LTJ. Mechanical enhancement via self-assembled nanostructures in polymer nanocomposites. Soft Matter. 2011;7:2449–55.

    Article  CAS  Google Scholar 

  12. 12.

    Weiss, RG, Terech, P. Molecular gels: materials with self-assembled fibrillar networks. Springer: Netherlands; 2006.

  13. 13.

    Cui J, Shen Z, Wan X. Study on the gel to crystal transition of a novel sugar-appended gelator. Langmuir. 2010;26:97–103.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Reddy SMM, Shanmugam G, Duraipandy N, Kiran MS, Mandal AB. An additional fluorenylmethoxycarbonyl (Fmoc) moiety in di-Fmoc-functionalized L-lysine induces pH-controlled ambidextrous gelation with significant advantages. Soft Matter. 2015;11:8126–40.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Delbecq F, Kaneko N, Endo H, Kawai T. Solvation effects with a photoresponsive two-component 12-hydroxystearic acid-azobenzene additive organogel. J Colloid Interface Sci. 2012;384:94–98.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Pozzo J-L, Clavier GM, Desvergne J-P. Rational design of new acid-sensitive organogelators. J Mater Chem. 1998;8:2575–7.

    Article  CAS  Google Scholar 

  17. 17.

    Roy S, et al. Dramatic specific-ion effect in supramolecular hydrogels. Chem A Eur J. 2012;18:11723–31.

    Article  CAS  Google Scholar 

  18. 18.

    Yu, X, Chen, L, Zhang, M, Yi, T. Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials. Chem Soc Rev. 2014;43:5346–71.

  19. 19.

    Kiyonaka S, Zhou S-L, Hamachi I. pH-responsive phase transition of supramolecular hydrogel consisting of glycosylated amino acetate and carboxylic acid derivative. Supramol Chem. 2003;15:521–8.

    Article  CAS  Google Scholar 

  20. 20.

    Terech, P, Ostuni, E, Weiss, RG. Structural study of cholesteryl anthraquinone-2-carboxylate (CAQ) physical organogels by neutron and X-ray small angle scattering. J Phys Chem. 1966;100:3759–66.

  21. 21.

    Sakurai, K, Kimura, T, Gronwald, O, Inoue, K, Shinkai, S. A hexagonally organized elemental supramolecular structure of a sugar-appended organogelator observed by synchrotron X-ray source. Chem. Lett. 2001:746–7.

  22. 22.

    Lim GS, Jung BM, Lee SJ, Song HH, Kim C. Synthesis of polycatenar-type organogelators based on chalcone and study of their supramolecular architectures. Chem Mater. 2007;19:460–7.

    Article  CAS  Google Scholar 

  23. 23.

    Xing P, Chen H, Bai L, Hao A, Zhao Y. Superstructure formation and topological evolution achieved by self-organization of a highly adaptive dynamer. ACS Nano. 2016;10:2716–27.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Babu TM, Prasad E. Charge-transfer-assisted supramolecular 1 D nanofibers through a cholesteric structure-directing agent: self-assembly design for supramolecular optoelectronic materials. Chem A Eur J. 2015;1599:11972–5.

    Article  CAS  Google Scholar 

  25. 25.

    Links, DA, Dhinakaran, MK, Das, TM. Studies on a novel class of triaryl pyridine N-glycosylamine amphiphiles as super gelators. Org Biomol Chem. 2012:2077–83. https://doi.org/10.1039/c2ob06834f

  26. 26.

    Li JL, Liu XY. Architecture of supramolecular soft functional materials: from understanding to micro-/nanoscale engineering. Adv Funct Mater. 2010;20:3196–216.

    Article  CAS  Google Scholar 

  27. 27.

    Cornwell DJ, Smith DK. Expanding the scope of gels—combining polymers with low-molecular-weight gelators to yield modified self-assembling smart materials with high-tech applications. Mater Horiz. 2015;2:279–93.

    Article  CAS  Google Scholar 

  28. 28.

    Pont G, Chen L, Spiller DG, Adams DJ. The effect of polymer additives on the rheological properties of dipeptide hydrogelators. Soft Matter. 2012;8:7797.

    Article  CAS  Google Scholar 

  29. 29.

    Adhia YJ, Schloemer TH, Perez MT, McNeil AJ. Using polymeric additives to enhance molecular gelation: impact of poly(acrylic acid) on pyridine-based gelators. Soft Matter. 2012;8:430.

    Article  CAS  Google Scholar 

  30. 30.

    Zhang Z, et al. Enhancing gelation ability of a dendritic gelator through complexation with a polyelectrolyte. Chem A Eur J. 2009;15:2352–61.

    Article  CAS  Google Scholar 

  31. 31.

    Way AE, et al. Enhancing the mechanical properties of guanosine-based supramolecular hydrogels with guanosine-containing polymers. Macromolecules. 2014;47:1810–8.

    Article  CAS  Google Scholar 

  32. 32.

    Liu XY, et al. Creating new supramolecular materials by architecture of three-dimensional nanocrystal fiber networks. J Am Chem Soc. 2002;124:15055–63.

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Landel, RF, Nielsen, LE. Mechanical properties of polymers and composites. CRC Press: New York, USA; 1993.

  34. 34.

    Malik S, Kawano Sichiro, Fujita N, Shinkai S. Pyridine-containing versatile gelators for post-modification of gel tissues toward construction of novel porphyrin nanotubes. Tetrahedron. 2007;63:7326–33.

    Article  CAS  Google Scholar 

  35. 35.

    Anisole. National Center for Biotechnology Information, PubChem Compound Database; CID=7519, https://pubchem.ncbi.nlm.nih.gov/compound/7519 (accessed May 2, 2018).

  36. 36.

    Geng S, Haque MMU, Oksman K. Crosslinked poly(vinyl acetate) (PVAc) reinforced with cellulose nanocrystals (CNC): structure and mechanical properties. Compos Sci Technol. 2016;126:35–42.

    Article  CAS  Google Scholar 

  37. 37.

    Wanasekara ND, Matolyak LE, Korley LTJ. Tunable mechanics in electrospun composites via hierarchical organization. ACS Appl Mater Interfaces. 2015;7:22970–9.

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Qiu X, Hu S. ‘Smart’ materials based on cellulose: a review of the preparations, properties, and applications. Mater. 2013;6:738–81.

    Article  CAS  Google Scholar 

  39. 39.

    Miao C, Hamad WY. Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose. 2013;20:2221–62.

    Article  CAS  Google Scholar 

  40. 40.

    Alexander SLM, Korley LTJ. Tunable hygromorphism: structural implications of low molecular weight gels and electrospun nanofibers in bilayer composites. Soft Matter. 2017;13:283–91.

    Article  CAS  Google Scholar 

  41. 41.

    Yan N, et al. Pyrenyl-linker-glucono gelators. Correlations of gel properties with gelator structures and characterization of solvent effects. Langmuir. 2013;29:793–805.

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Huang Y, et al. Unusual C − I ··· O halogen bonding in triazole derivatives: gelation solvents at two extremes of polarity and formation of superorganogels. Langmuir. 2017;33:311–21.

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Chakraborty P, Bairi P, Roy B, Nandi AK. Improved mechanical and electronic properties of co-assembled folic acid gel with aniline and polyaniline. ACS Appl Mater Interfaces. 2014;6:3615–22.

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Zhang Y, et al. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008;29:4314–22.

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Xue P, et al. Functional organogel based on a salicylideneaniline derivative with enhanced fluorescence emission and photochromism. Chem A Eur J. 2007;13:8231–9.

    Article  CAS  Google Scholar 

  46. 46.

    Takeno H, Mochizuki T. A structural development of an organogel explored by synchrotron time-resolved small-angle X-ray scattering. Colloid Polym Sci. 2013;291:2783–9.

    Article  CAS  Google Scholar 

  47. 47.

    Wu Y, et al. Photoinduced reversible gel–sol transitions of dicholesterol-linked azobenzene derivatives through breaking and reforming of van der Waals interactions. Soft Matter. 2011;7:716–21.

    Article  CAS  Google Scholar 

  48. 48.

    Luo X, Li Z, Xiao W, Wang Q, Zhong J. Self-assembled organogels formed by monochain derivatives of ethylenediamine. J Colloid Interface Sci. 2009;336:803–7.

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Chen W, Yang Y, Lee CH, Shen AQ. Confinement effects on the self-assembly of 1,3:2,4-di-p-methylbenzylidene sorbitol based organogel. Langmuir. 2008;24:10432–6.

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Chakraborty P, Roy B, Bairi P, Nandi AK. Improved mechanical and photophysical properties of chitosan incorporated folic acid gel possessing the characteristics of dye and metal ion absorption. J Mater Chem. 2012;22:20291.

    Article  CAS  Google Scholar 

  51. 51.

    Li JL, Yuan B, Liu XY, Wang XG, Wang RY. Kinetically controlled homogenization and transformation of crystalline fiber networks in supramolecular materials. Cryst Growth Des. 2011;11:3227–34.

    Article  CAS  Google Scholar 

  52. 52.

    Sangeetha NM, Maitra U. Supramolecular gels: functions and uses. Chem Soc Rev. 2005;34:821–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the DuPont Young Professor Grant. S. Alexander would like to thank the NSF Graduate Research Fellowship for financial support. This research used resources from the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract no. DE-AC02-06CH11357. This work made use of the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation under award number DMR-14-19807. Additionally, this work utilized the Advanced Materials Characterization Laboratory (AMCL) and the Keck Center for Advanced Microscopy and Microanalysis (Keck CAMM) at the University of Delaware for dynamic light scattering and scanning electron microscopy, respectively. This work also benefited from the use of the SasView application, originally developed under NSF award DMR-0520547. SasView contains code developed with funding from the European Union’s Horizon 2020 research and innovation programme under the SINE2020 project, Grant agreement no 654000.

Author information

Affiliations

Authors

Corresponding author

Correspondence to LaShanda T. J. Korley.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alexander, S.L.M., Korley, L.T.J. Nucleation effects of high molecular weight polymer additives on low molecular weight gels. Polym J 50, 775–786 (2018). https://doi.org/10.1038/s41428-018-0076-0

Download citation

Search

Quick links