Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neutrophil-derived PAD4 induces citrullination of CKMT1 exacerbates mucosal inflammation in inflammatory bowel disease

Abstract

Peptidyl arginine deiminase 4 (PAD4) plays a pivotal role in infection and inflammatory diseases by facilitating the formation of neutrophil extracellular traps (NETs). However, the substrates of PAD4 and its exact role in inflammatory bowel disease (IBD) remain unclear. In this study, we employed single-cell RNA sequencing (scRNA-seq) and substrate citrullination mapping to decipher the role of PAD4 in intestinal inflammation associated with IBD. Our results demonstrated that PAD4 deficiency alleviated colonic inflammation and restored intestinal barrier function in a dextran sulfate sodium (DSS)-induced colitis mouse model. scRNA-seq analysis revealed significant alterations in intestinal cell populations, with reduced neutrophil numbers and changes in epithelial subsets upon PAD4 deletion. Gene expression analysis highlighted pathways related to inflammation and epithelial cell function. Furthermore, we found that neutrophil-derived extracellular vesicles (EVs) carrying PAD4 were secreted into intestinal epithelial cells (IECs). Within IECs, PAD4 citrullinates mitochondrial creatine kinase 1 (CKMT1) at the R242 site, leading to reduced CKMT1 protein stability via the autophagy pathway. This action compromises mitochondrial homeostasis, impairs intestinal barrier integrity, and induces IECs apoptosis. IEC-specific depletion of CKMT1 exacerbated intestinal inflammation and apoptosis in mice with colitis. Clinical analysis of IBD patients revealed elevated levels of PAD4, increased CKMT1 citrullination, and decreased CKMT1 expression. In summary, our findings highlight the crucial role of PAD4 in IBD, where it modulates IECs plasticity via CKMT1 citrullination, suggesting that PAD4 may be a potential therapeutic target for IBD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Single-cell RNA-seq data have been deposited in the NCBI Sequence Read Archive (SRA) under the accession code PRJNA906274. The raw mass spectrometry data generated in this study have been submitted to the ProteomeXchange database (www.proteomexchange.org) under accession number PXD041504.

References

  1. Dos Santos Ramos A, Viana GCS, de Macedo Brigido M, Almeida JF. Neutrophil extracellular traps in inflammatory bowel diseases: Implications in pathogenesis and therapeutic targets. Pharmacol Res. 2021;171:105779.

    Article  PubMed  Google Scholar 

  2. Bennike TB, Carlsen TG, Ellingsen T, Bonderup OK, Glerup H, Bogsted M, et al. Neutrophil extracellular traps in ulcerative colitis: a proteome analysis of intestinal biopsies. Inflamm Bowel Dis. 2015;21:2052–67.

    Article  PubMed  Google Scholar 

  3. Dinallo V, Marafini I, Di Fusco D, Laudisi F, Franze E, Di Grazia A, et al. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis. J Crohns Colitis. 2019;13:772–84.

    Article  PubMed  Google Scholar 

  4. Li T, Wang C, Liu Y, Li B, Zhang W, Wang L, et al. Neutrophil extracellular traps induce intestinal damage and thrombotic tendency in inflammatory bowel disease. J Crohns Colitis. 2020;14:240–53.

    Article  PubMed  Google Scholar 

  5. Zhang T, Mei Y, Dong W, Wang J, Huang F, Wu J. Evaluation of protein arginine deiminase-4 inhibitor in TNBS- induced colitis in mice. Int Immunopharmacol. 2020;84:106583.

    Article  CAS  PubMed  Google Scholar 

  6. Yipp BG, Kubes P. NETosis: how vital is it? Blood. 2013;122:2784–94.

    Article  CAS  PubMed  Google Scholar 

  7. Brinkmann V, Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol. 2007;5:577–82.

    Article  CAS  PubMed  Google Scholar 

  8. Teijeira A, Garasa S, Gato M, Alfaro C, Migueliz I, Cirella A, et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 2020;52:856–71. e8.

    Article  CAS  PubMed  Google Scholar 

  9. Shi J, Darrah E, Sims GP, Mustelin T, Sampson K, Konig MF, et al. Affinity maturation shapes the function of agonistic antibodies to peptidylarginine deiminase type 4 in rheumatoid arthritis. Ann Rheum Dis. 2018;77:141–8.

    Article  CAS  PubMed  Google Scholar 

  10. Cao D, Qian K, Zhao Y, Hong J, Chen H, Wang X, et al. Association of neutrophil extracellular traps with fistula healing in patients with complex perianal fistulising Crohn’s disease. J Crohns Colitis. 2023;17:580–92.

    Article  PubMed  Google Scholar 

  11. Leppkes M, Lindemann A, Gosswein S, Paulus S, Roth D, Hartung A, et al. Neutrophils prevent rectal bleeding in ulcerative colitis by peptidyl-arginine deiminase-4-dependent immunothrombosis. Gut. 2022;71:2414–29.

    Article  CAS  PubMed  Google Scholar 

  12. Lai HJ, Doan HT, Lin EY, Chiu YL, Cheng YK, Lin YH, et al. Histones of neutrophil extracellular traps directly disrupt the permeability and integrity of the intestinal epithelial barrier. Inflamm Bowel Dis. 2023;29:783–97.

    Article  PubMed  Google Scholar 

  13. Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010;207:1853–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Christophorou MA, Castelo-Branco G, Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A, et al. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature. 2014;507:104–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, et al. Histone deimination antagonizes arginine methylation. Cell. 2004;118:545–53.

    Article  CAS  PubMed  Google Scholar 

  16. Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, et al. The role of the semaphorins in cancer. Cell Adh Migr. 2016;10:652–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Resende F, Araujo S, Tavares LP, Teixeira MM, Costa VV. The multifaceted role of annexin A1 in viral infections. Cells. 2023;12:1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ostermann G, Weber KS, Zernecke A, Schroder A, Weber C. JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol. 2002;3:151–8.

    Article  CAS  PubMed  Google Scholar 

  19. Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361:eaao4227.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Neeli I, Khan SN, Radic M. Histone deimination as a response to inflammatory stimuli in neutrophils. J Immunol. 2008;180:1895–902.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D, et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol. 2009;184:205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chu C, Wang X, Chen F, Yang C, Shi L, Xu W, et al. Neutrophil extracellular traps aggravate intestinal epithelial necroptosis in ischaemia-reperfusion by regulating TLR4/RIPK3/FUNDC1-required mitophagy. Cell Prolif. 2024;57:e13538.

    Article  CAS  PubMed  Google Scholar 

  23. Sun S, Duan Z, Wang X, Chu C, Yang C, Chen F, et al. Neutrophil extracellular traps impair intestinal barrier functions in sepsis by regulating TLR9-mediated endoplasmic reticulum stress pathway. Cell Death Dis. 2021;12:606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanwlani R, Gangoda L. Role of extracellular vesicles in cell death and inflammation. Cells. 2021;10:2663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kilsgard O, Andersson P, Malmsten M, Nordin SL, Linge HM, Eliasson M, et al. Peptidylarginine deiminases present in the airways during tobacco smoking and inflammation can citrullinate the host defense peptide LL-37, resulting in altered activities. Am J Respir Cell Mol Biol. 2012;46:240–8.

    Article  CAS  PubMed  Google Scholar 

  26. Loos T, Mortier A, Gouwy M, Ronsse I, Put W, Lenaerts JP, et al. Citrullination of CXCL10 and CXCL11 by peptidylarginine deiminase: a naturally occurring posttranslational modification of chemokines and new dimension of immunoregulation. Blood. 2008;112:2648–56.

    Article  CAS  PubMed  Google Scholar 

  27. Proost P, Loos T, Mortier A, Schutyser E, Gouwy M, Noppen S, et al. Citrullination of CXCL8 by peptidylarginine deiminase alters receptor usage, prevents proteolysis, and dampens tissue inflammation. J Exp Med. 2008;205:2085–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tilvawala R, Nemmara VV, Reyes AC, Sorvillo N, Salinger AJ, Cherpokova D, et al. The role of SERPIN citrullination in thrombosis. Cell Chem Biol. 2021;28:1728–39 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J. 1992;281:21–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cimino D, Fuso L, Sfiligoi C, Biglia N, Ponzone R, Maggiorotto F, et al. Identification of new genes associated with breast cancer progression by gene expression analysis of predefined sets of neoplastic tissues. Int J Cancer. 2008;123:1327–38.

    Article  CAS  PubMed  Google Scholar 

  31. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80:1107–213.

    Article  CAS  PubMed  Google Scholar 

  32. Yost CC, Schwertz H, Cody MJ, Wallace JA, Campbell RA, Vieira-de-Abreu A, et al. Neonatal NET-inhibitory factor and related peptides inhibit neutrophil extracellular trap formation. J Clin Investig. 2016;126:3783–98.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sorensen OE, Borregaard N. Neutrophil extracellular traps - the dark side of neutrophils. J Clin Investig. 2016;126:1612–20.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kolaczkowska E, Jenne CN, Surewaard BG, Thanabalasuriar A, Lee WY, Sanz MJ, et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun. 2015;6:6673.

    Article  CAS  PubMed  Google Scholar 

  35. Abd El Hafez A, Mohamed AS, Shehta A, Sheta H. Neutrophil extracellular traps-associated protein peptidyl arginine deaminase 4 immunohistochemical expression in ulcerative colitis and its association with the prognostic predictors. Pathol Res Pract. 2020;216:153102.

    Article  CAS  PubMed  Google Scholar 

  36. Torok S, Almasi N, Valkusz Z, Posa A, Varga C, Kupai K. Investigation of H(2)S donor treatment on neutrophil extracellular traps in experimental colitis. Int J Mol Sci. 2021;22:12729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pan Z, Xie X, Chen Y, Pan S, Wu Z, Yang C, et al. Huang Qin decoction inhibits the initiation of experimental colitis associated carcinogenesis by controlling the PAD4 dependent NETs. Phytomedicine. 2022;107:154454.

    Article  CAS  PubMed  Google Scholar 

  38. Porto BN, Stein RT. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing? Front Immunol. 2016;7:311.

    Article  PubMed  PubMed Central  Google Scholar 

  39. van der Windt DJ, Sud V, Zhang H, Varley PR, Goswami J, Yazdani HO, et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology. 2018;68:1347–60.

    Article  PubMed  Google Scholar 

  40. Liu Y, Carmona-Rivera C, Moore E, Seto NL, Knight JS, Pryor M, et al. Myeloid-specific deletion of peptidylarginine deiminase 4 mitigates atherosclerosis. Front Immunol. 2018;9:1680.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chang HH, Liu GY, Dwivedi N, Sun B, Okamoto Y, Kinslow JD, et al. A molecular signature of preclinical rheumatoid arthritis triggered by dysregulated PTPN22. JCI Insight. 2016;1:e90045.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jang B, Kim HW, Kim JS, Kim WS, Lee BR, Kim S, et al. Peptidylarginine deiminase inhibition impairs Toll-like receptor agonist-induced functional maturation of dendritic cells, resulting in the loss of T cell-proliferative capacity: a partial mechanism with therapeutic potential in inflammatory settings. J Leukoc Biol. 2015;97:351–62.

    Article  PubMed  Google Scholar 

  43. Martinod K, Witsch T, Erpenbeck L, Savchenko A, Hayashi H, Cherpokova D, et al. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J Exp Med. 2017;214:439–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011;3:73ra19.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dwivedi N, Radic M. Citrullination of autoantigens implicates NETosis in the induction of autoimmunity. Ann Rheum Dis. 2014;73:483–91.

    Article  CAS  PubMed  Google Scholar 

  46. Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med. 2011;3:73ra20.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Spengler J, Lugonja B, Ytterberg AJ, Zubarev RA, Creese AJ, Pearson MJ, et al. Release of active peptidyl arginine deiminases by neutrophils can explain production of extracellular citrullinated autoantigens in rheumatoid arthritis synovial fluid. Arthritis Rheumatol. 2015;67:3135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Slater TW, Finkielsztein A, Mascarenhas LA, Mehl LC, Butin-Israeli V, Sumagin R. Neutrophil microparticles deliver active myeloperoxidase to injured mucosa to inhibit epithelial wound healing. J Immunol. 2017;198:2886–97.

    Article  CAS  PubMed  Google Scholar 

  49. Sun B, Dwivedi N, Bechtel TJ, Paulsen JL, Muth A, Bawadekar M, et al. Citrullination of NF-kappaB p65 promotes its nuclear localization and TLR-induced expression of IL-1beta and TNFalpha. Sci Immunol. 2017;2:eaal3062.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhou Y, An LL, Chaerkady R, Mittereder N, Clarke L, Cohen TS, et al. Evidence for a direct link between PAD4-mediated citrullination and the oxidative burst in human neutrophils. Sci Rep. 2018;8:15228.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li P, Yao H, Zhang Z, Li M, Luo Y, Thompson PR, et al. Regulation of p53 target gene expression by peptidylarginine deiminase 4. Mol Cell Biol. 2008;28:4745–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang X, Gamble MJ, Stadler S, Cherrington BD, Causey CP, Thompson PR, et al. Genome-wide analysis reveals PADI4 cooperates with Elk-1 to activate c-Fos expression in breast cancer cells. PLoS Genet. 2011;7:e1002112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mondal S, Thompson PR. Protein arginine deiminases (PADs): biochemistry and chemical biology of protein citrullination. Acc Chem Res. 2019;52:818–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids. 2011;40:1271–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wyss M, Smeitink J, Wevers RA, Wallimann T. Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. Biochim Biophys Acta. 1992;1102:119–66.

    Article  CAS  PubMed  Google Scholar 

  56. Whittington HJ, Ostrowski PJ, McAndrew DJ, Cao F, Shaw A, Eykyn TR, et al. Over-expression of mitochondrial creatine kinase in the murine heart improves functional recovery and protects against injury following ischaemia-reperfusion. Cardiovasc Res. 2018;114:858–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meyer LE, Machado LB, Santiago AP, da-Silva WS, De Felice FG, Holub O, et al. Mitochondrial creatine kinase activity prevents reactive oxygen species generation: antioxidant role of mitochondrial kinase-dependent ADP re-cycling activity. J Biol Chem. 2006;281:37361–71.

    Article  CAS  PubMed  Google Scholar 

  58. Gharib A, De Paulis D, Li B, Augeul L, Couture-Lepetit E, Gomez L, et al. Opposite and tissue-specific effects of coenzyme Q2 on mPTP opening and ROS production between heart and liver mitochondria: role of complex I. J Mol Cell Cardiol. 2012;52:1091–5.

    Article  CAS  PubMed  Google Scholar 

  59. Wang SL, Shao BZ, Zhao SB, Chang X, Wang P, Miao CY, et al. Intestinal autophagy links psychosocial stress with gut microbiota to promote inflammatory bowel disease. Cell Death Dis. 2019;10:391.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 82100587, No. 82170567), the National Key R&D Program of China (No. 2023YFC2413801, China), the Shanghai Sailing Program (No. 21YF1458700), the China National Postdoctoral Program for Innovative Talents (No. BX20220288), the China Postdoctoral Science Foundation (No. 2022M720138), the Program of Shanghai Academic Research Leader (No. 22XD1425000), the Deep Blue Project of Naval Medical University (Pilot Talent Plan), the Basic Medical Research Project of the First Affiliated Hospital of Naval Medical University (No. 2023PY06), the “Changying” Talent Program of Changhai Hospital of Naval Medical University, and the “Changjian” Talent Program of Changhai Hospital of Naval Medical University.

Author information

Authors and Affiliations

Authors

Contributions

Shuling Wang, Yihang Song, Zhijie Wang, and Xin Chang designed the methodology and performed, analyzed, and interpreted the experiments. Haicong Wu and Ziwei Yan performed some of the animal experiments and data analysis. Jiayi Wu, Zixuan He, Le Kang, and Wenjun Hu supported some of the animal and cell experiments. Xingxing Ren, Zhaoshen Li, and Yu Bai were involved in developing the methodology, study conceptualization, and writing the original draft. All authors contributed to the review and editing of the manuscript. Zhaoshen Li and Yu Bai provided funding and supervised the execution of the study.

Corresponding authors

Correspondence to Zhaoshen Li, Xingxing Ren or Yu Bai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Song, Y., Wang, Z. et al. Neutrophil-derived PAD4 induces citrullination of CKMT1 exacerbates mucosal inflammation in inflammatory bowel disease. Cell Mol Immunol (2024). https://doi.org/10.1038/s41423-024-01158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41423-024-01158-6

Keywords

Search

Quick links