Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

gp120-derived amyloidogenic peptides form amyloid fibrils that increase HIV-1 infectivity

Abstract

Apart from mediating viral entry, the function of the free HIV-1 envelope protein (gp120) has yet to be elucidated. Our group previously showed that EP2 derived from one β-strand in gp120 can form amyloid fibrils that increase HIV-1 infectivity. Importantly, gp120 contains ~30 β-strands. We examined whether gp120 might serve as a precursor protein for the proteolytic release of amyloidogenic fragments that form amyloid fibrils, thereby promoting viral infection. Peptide array scanning, enzyme degradation assays, and viral infection experiments in vitro confirmed that many β-stranded peptides derived from gp120 can indeed form amyloid fibrils that increase HIV-1 infectivity. These gp120-derived amyloidogenic peptides, or GAPs, which were confirmed to form amyloid fibrils, were termed gp120-derived enhancers of viral infection (GEVIs). GEVIs specifically capture HIV-1 virions and promote their attachment to target cells, thereby increasing HIV-1 infectivity. Different GAPs can cross-interact to form heterogeneous fibrils that retain the ability to increase HIV-1 infectivity. GEVIs even suppressed the antiviral activity of a panel of antiretroviral agents. Notably, endogenous GAPs and GEVIs were found in the lymphatic fluid, lymph nodes, and cerebrospinal fluid (CSF) of AIDS patients in vivo. Overall, gp120-derived amyloid fibrils might play a crucial role in the process of HIV-1 infectivity and thus represent novel targets for anti-HIV therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pu J, Wang Q, Xu W, Lu L, Jiang S. Development of protein- and peptide-based HIV entry inhibitors targeting gp120 or gp41. Viruses. 2019;11:705.

  2. Ronaldson PT, Bendayan R. HIV-1 viral envelope glycoprotein gp120 triggers an inflammatory response in cultured rat astrocytes and regulates the functional expression of P-glycoprotein. Mol Pharm. 2006;70:1087–98.

    Article  CAS  Google Scholar 

  3. Cossarizza A. Apoptosis and HIV infection: about molecules and genes. Curr Pharm Des. 2008;14:237–44.

    Article  CAS  PubMed  Google Scholar 

  4. He X, Yang W, Zeng Z, Wei Y, Gao J, Zhang B, et al. NLRP3-dependent pyroptosis is required for HIV-1 gp120-induced neuropathology. Cell Mol Immunol. 2020;17:283–99.

    Article  CAS  PubMed  Google Scholar 

  5. Smith LK, Kuhn TB, Chen J, Bamburg JR. HIV associated neurodegenerative disorders: a new perspective on the role of lipid rafts in Gp120-mediated neurotoxicity. Curr HIV Res. 2018;16:258–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Anand AR, Rachel G, Parthasarathy D. HIV proteins and endothelial dysfunction: implications in cardiovascular disease. Front Cardiovasc Med. 2018;5:185.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Qian Y, Che X, Jiang J, Wang Z. Mechanisms of blood-retinal barrier disruption by HIV-1. Curr HIV Res. 2019;17:26–32.

    Article  CAS  PubMed  Google Scholar 

  8. Cotter EJ, Malizia AP, Chew N, Powderly WG, Doran PP. HIV proteins regulate bone marker secretion and transcription factor activity in cultured human osteoblasts with consequent potential implications for osteoblast function and development. AIDS Res Hum Retroviruses. 2007;23:1521–30.

    Article  CAS  PubMed  Google Scholar 

  9. Sipe JD, Cohen AS. Review: history of the amyloid fibril. J Struct Biol. 2000;130:88–98.

    Article  CAS  PubMed  Google Scholar 

  10. Jaunmuktane Z, Mead S, Ellis M, Wadsworth JD, Nicoll AJ, Kenny J, et al. Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy. Nature. 2015;525:247–50.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Marín-Moreno A, Fernández-Borges N, Espinosa JC, Andréoletti O, Torres JM. Transmission and replication of prions. Prog Mol Biol Transl Sci. 2017;150:181–201.

    Article  PubMed  Google Scholar 

  12. Epstein EA, Chapman MR. Polymerizing the fibre between bacteria and host cells: the biogenesis of functional amyloid fibres. Cell Microbiol. 2008;10:1413–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gebbink MF, Claessen D, Bouma B, Dijkhuizen L, Wösten HA. Amyloids-a functional coat for microorganisms. Nat Rev Microbiol. 2005;3:333–41.

    Article  CAS  PubMed  Google Scholar 

  14. Münch J, Rücker E, Ständker L, Adermann K, Goffinet C, Schindler M, et al. Semen-derived amyloid fibrils drastically enhance HIV infection. Cell. 2007;131:1059–71.

    Article  PubMed  Google Scholar 

  15. Roan NR, Müller JA, Liu H, Chu S, Arnold F, Stürzel CM, et al. Peptides released by physiological cleavage of semen coagulum proteins form amyloids that enhance HIV infection. Cell Host Microbe. 2011;10:541–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Röcker A, Roan NR, Yadav JK, Fändrich M, Münch J. Structure, function and antagonism of semen amyloids. Chem Commun. 2018;54:7557–69.

    Article  Google Scholar 

  17. Tan S, Li L, Lu L, Pan C, Lu H, Oksov Y, et al. Peptides derived from HIV-1 gp120 co-receptor binding domain form amyloid fibrils and enhance HIV-1 infection. FEBS Lett. 2014;588:1515–22.

    Article  CAS  PubMed  Google Scholar 

  18. Jeyashekar NS, Sadana A, Vo-Dinh T. Protein amyloidose misfolding: mechanisms, detection, and pathological implications. Methods Mol Biol. 2005;300:417–35.

    PubMed  Google Scholar 

  19. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 1998;393:648–59.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  20. Pancera M, Majeed S, Ban YE, Chen L, Huang CC, Kong L, et al. Structure of HIV-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility. Proc Natl Acad Sci USA. 2010;107:1166–71.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Singh AK, Jiang Y, Gupta S. Effects of chronic alcohol drinking on receptor-binding, internalization, and degradation of human immunodeficiency virus 1 envelope protein gp120 in hepatocytes. Alcohol. 2007;41:591–606.

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Ren R, Yu F, Wang C, Zhang X, Li W, et al. A degraded fragment of HIV-1 Gp120 in rat hepatocytes forms fibrils and enhances HIV-1 infection. Biophys J. 2017;113:1425–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kwong PD, Wyatt R, Majeed S, Robinson J, Sweet RW, Sodroski J, et al. Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates. Structure. 2000;8:1329–39.

    Article  CAS  PubMed  Google Scholar 

  24. Nilsson MR. Techniques to study amyloid fibril formation in vitro. Methods. 2004;34:151–60.

    Article  CAS  PubMed  Google Scholar 

  25. Usmani SM, Zirafi O, Müller JA, Sandi-Monroy NL, Yadav JK, Meier C, et al. Direct visualization of HIV-enhancing endogenous amyloid fibrils in human semen. Nat Commun. 2014;5:3508.

    Article  ADS  PubMed  Google Scholar 

  26. Gosai A, Hau Yeah BS, Nilsen-Hamilton M, Shrotriya P. Label free thrombin detection in presence of high concentration of albumin using an aptamer-functionalized nanoporous membrane. Biosens Bioelectron. 2019;126:88–95.

    Article  CAS  PubMed  Google Scholar 

  27. Shan M, Yang D, Dou H, Zhang L. Fucosylation in cancer biology and its clinical applications. Prog Mol Biol Transl Sci. 2019;162:93–119.

    Article  CAS  PubMed  Google Scholar 

  28. Roan NR, Münch J, Arhel N, Mothes W, Neidleman J, Kobayashi A, et al. The cationic properties of SEVI underlie its ability to enhance human immunodeficiency virus infection. J Virol. 2009;83:73–80.

    Article  CAS  PubMed  Google Scholar 

  29. Yolamanova M, Meier C, Shaytan AK, Vas V, Bertoncini CW, Arnold F, et al. Peptide nanofibrils boost retroviral gene transfer and provide a rapid means for concentrating viruses. Nat Nanotechnol. 2013;8:130–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Neurath AR, Strick N, Li YY. Role of seminal plasma in the anti-HIV-1 activity of candidate microbicides. BMC Infect Dis. 2006;6:150.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Zirafi O, Kim KA, Roan NR, Kluge SF, Müller JA, Jiang S, et al. Semen enhances HIV infectivity and impairs the antiviral efficacy of microbicides. Sci Transl Med. 2014;6:262ra157.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Young LM, Tu LH, Raleigh DP, Ashcroft AE, Radford SE. Understanding co-polymerization in amyloid formation by direct observation of mixed oligomers. Chem Sci. 2017;8:5030–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Chen J, Ren R, Tan S, Zhang W, Zhang X, Yu F et al. A peptide derived from the HIV-1 gp120 coreceptor-binding region promotes formation of PAP248-286 amyloid fibrils to enhance HIV-1 infection. PLoS One. 2015;10:e0144522.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Linke RP, Gärtner HV, Michels H. High-sensitivity diagnosis of AA amyloidosis using Congo red and immunohistochemistry detects missed amyloid deposits. J Histochem Cytochem. 1995;43:863–9.

    Article  CAS  PubMed  Google Scholar 

  35. Menter T, Bachmann M, Grieshaber S, Tzankov A. A more accurate approach to amyloid detection and subtyping: combining in situ Congo red staining and immunohistochemistry. Pathobiology. 2017;84:49–55.

    Article  CAS  PubMed  Google Scholar 

  36. Buzy J, Brenneman DE, Pert CB, Martin A, Salazar A, Ruff MR. Potent gp120-like neurotoxic activity in the cerebrospinal fluid of HIV-infected individuals is blocked by peptide T. Brain Res. 1992;598:10–18.

    Article  CAS  PubMed  Google Scholar 

  37. Kajava AV, Baxa U, Steven AC. Beta arcades: recurring motifs in naturally occurring and disease-related amyloid fibrils. FASEB J. 2010;24:1311–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Parren PW, Burton DR, Sattentau QJ. HIV-1 antibody-debris or virion? Nat Med. 1997;3:366–7.

    Article  CAS  PubMed  Google Scholar 

  39. Moore JP, McKeating JA, Weiss RA, Sattentau QJ. Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science. 1990;250:1139–42.

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Hart TK, Kirsh R, Ellens H, Sweet RW, Lambert DM, Petteway SR Jr et al. Binding of soluble CD4 proteins to human immunodeficiency virus type 1 and infected cells induces release of envelope glycoprotein gp120. Proc Natl Acad Sci USA. 1991;88:2189–93.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  41. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996;271:1582–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995;373:123–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Cummins NW, Rizza SA, Badley AD. How much gp120 is there? J Infect Dis. 2010;201:1273–4.

    Article  PubMed  Google Scholar 

  44. Reeds DN, Cade WT, Patterson BW, Powderly WG, Klein S, Yarasheski KE. Whole-body proteolysis rate is elevated in HIV-associated insulin resistance. Diabetes. 2006;55:2849–55.

    Article  CAS  PubMed  Google Scholar 

  45. Ponomarenko NA, Durova OM, Vorobiev II, Aleksandrova ES, Telegin GB, Chamborant OG, et al. Catalytic antibodies in clinical and experimental pathology: human and mouse models. J Immunol Methods. 2002;269:197–211.

    Article  CAS  PubMed  Google Scholar 

  46. Wolf DA, Dholakia SR, Keherly MJ, Rodríguez-Wolf MG, Cloyd MW, Gelman BB. Proteolysis in the myelopathy of acquired immunodeficiency syndrome: preferential loss of the C-8 component of myelin basic protein. Lab Invest. 1997;77:513–23.

    CAS  PubMed  Google Scholar 

  47. Paul S, Karle S, Planque S, Taguchi H, Salas M, Nishiyama Y et al. Naturally occurring proteolytic antibodies: selective immunoglobulin M-catalyzed hydrolysis of HIV gp120. J Biol Chem. 2004;279:39611–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ponomarenko NA, Vorobiev II, Alexandrova ES, Reshetnyak AV, Telegin GB, Khaidukov SV, et al. Induction of a protein-targeted catalytic response in autoimmune prone mice: antibody-mediated cleavage of HIV-1 glycoprotein GP120. Biochemistry. 2006;45:324–30.

    Article  CAS  PubMed  Google Scholar 

  49. Planque S, Nishiyama Y, Taguchi H, Salas M, Hanson C, Paul S. Catalytic antibodies to HIV: physiological role and potential clinical utility. Autoimmun Rev. 2008;7:473–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Willey RL, Bonifacino JS, Potts BJ, Martin MA, Klausner RD. Biosynthesis, cleavage, and degradation of the human immunodeficiency virus 1 envelope glycoprotein gp160. Proc Natl Acad Sci USA. 1988;85:9580–4.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  51. Fowler DM, Koulov AV, Balch WE, Kelly JW. Functional amyloid-from bacteria to humans. Trends Biochem Sci. 2007;32:217–24.

    Article  CAS  PubMed  Google Scholar 

  52. Fletcher CV, Staskus K, Wietgrefe SW, Rothenberger M, Reilly C, Chipman JG, et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc Natl Acad Sci USA. 2014;111:2307–12.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  53. Anderson EM, Maldarelli F. The role of integration and clonal expansion in HIV infection: live long and prosper. Retrovirology. 2018;15:71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Imamichi H, Smith M, Adelsberger JW, Izumi T, Scrimieri F, Sherman BT, et al. Defective HIV-1 proviruses produce viral proteins. Proc Natl Acad Sci USA. 2020;117:3704–10.

  55. Yukl SA, Shergill AK, Ho T, Killian M, Girling V, Epling L, et al. The distribution of HIV DNA and RNA in cell subsets differs in gut and blood of HIV-positive patients on ART: implications for viral persistence. J Infect Dis. 2013;208:1212–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Klasse PJ, Moore JP. Is there enough gp120 in the body fluids of HIV-1-infected individuals to have biologically significant effects? Virology. 2004;323:1–8.

    Article  CAS  PubMed  Google Scholar 

  57. Shahim P, Zetterberg H, Simrén J, Ashton NJ, Norato G, Schöll M et al. Association of plasma biomarker levels with their CSF concentration and the number and severity of concussions in professional athletes. Neurology. 2022;99:E347–E354.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Canestri A, Lescure FX, Jaureguiberry S, Moulignier A, Amiel C, Marcelin AG et al. Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis. 2010;50:773–8.

    Article  PubMed  Google Scholar 

  59. Edén A, Fuchs D, Hagberg L, Nilsson S, Spudich S, Svennerholm B, et al. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment. J Infect Dis. 2010;202:1819–25.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Wang Y, Liu M, Lu Q, Farrell M, Lappin JM, Shi J et al. Global prevalence and burden of HIV-associated neurocognitive disorder: A meta-analysis. Neurology. 2020;95:e2610–e2621.

    Article  CAS  PubMed  Google Scholar 

  61. Díaz-Caballero M, Navarro S, Ventura S. Functionalized prion-inspired amyloids for biosensor applications. Biomacromolecules. 2021;22:2822–33.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Wang W, Gil-Garcia M, Ventura S. Dual antibody-conjugated amyloid nanorods to promote selective cell-cell interactions. ACS Appl Mater Interfaces. 2021;13:14875–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Knowles TP, Buehler MJ. Nanomechanics of functional and pathological amyloid materials. Nat Nanotechnol. 2011;6:469–79.

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Nyström S, Hammarstrom P. Amyloidogenesis of SARS-CoV-2 Spike Protein. J Am Chem Soc. 2022;144:8945–50.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Gadad BS, Britton GB, Rao KS. Targeting oligomers in neurodegenerative disorders: lessons from alpha-synuclein, tau, and amyloid-beta peptide. J Alzheimers Dis. 2011;24:223–232.

    Article  CAS  PubMed  Google Scholar 

  66. Marmentini C, Branco RCS, Boschero AC, Kurauti MA. Islet amyloid toxicity: from genesis to counteracting mechanisms. J Cell Physiol. 2022;237:1119–42.

    Article  CAS  PubMed  Google Scholar 

  67. Marin-Argany M, Lin Y, Misra P, Williams A, Wall JS, Howell KG et al. Cell damage in light chain amyloidosis: fibril internalization, toxicity and cell-mediated seeding. J Biol Chem. 2016;291:19813–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Lee S, Choi MC, Al Adem K, Lukman S, Kim TY. Aggregation and cellular toxicity of pathogenic or non-pathogenic proteins. Sci Rep. 2020;10:5120.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  69. Trono D, Van Lint C, Rouzioux C, Verdin E, Barré-Sinoussi F, Chun TW, et al. HIV persistence and the prospect of long-term drug-free remissions for HIV-infected individuals. Science. 2010;329:174–80.

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Calmy A, Pascual F, Ford N. HIV drug resistance. N. Engl J Med. 2004;350:2720–1.

    Article  CAS  PubMed  Google Scholar 

  71. Popovic M, Tenner-Racz K, Pelser C, Stellbrink HJ, van Lunzen J, Lewis G et al. Persistence of HIV-1 structural proteins and glycoproteins in lymph nodes of patients under highly active antiretroviral therapy. Proc Natl Acad Sci USA. 2005;102:14807–12.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  72. Kramer HB, Lavender KJ, Qin L, Stacey AR, Liu MK, di Gleria K, et al. Elevation of intact and proteolytic fragments of acute phase proteins constitutes the earliest systemic antiviral response in HIV-1 infection. PLoS Pathog. 2010;6:e1000893.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Harms M, Hayn M, Zech F, Kirchhoff F, Münch J. Endogenous peptide inhibitors of HIV entry. Adv Exp Med Biol. 2022;1366:65–85.

    Article  CAS  PubMed  Google Scholar 

  74. Münch J, Ständker L, Adermann K, Schulz A, Schindler M, Chinnadurai R, et al. Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell. 2007;129:263–75.

    Article  PubMed  Google Scholar 

  75. Wang W, Nema S, Teagarden D. Protein aggregation-pathways and influencing factors. Int J Pharm. 2010;390:89–99.

    Article  CAS  PubMed  Google Scholar 

  76. Tan S, Li JQ, Cheng H, Li Z, Lan Y, Zhang TT, et al. The anti-parasitic drug suramin potently inhibits formation of seminal amyloid fibrils and their interaction with HIV-1. J Biol Chem. 2019;294:13740–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Tan S, Li W, Li Z, Li Y, Luo J, Yu L, et al. A novel CXCR4 targeting protein SDF-1/54 as an HIV-1 entry inhibitor. Viruses 2019;11:874.

  78. Li L, He L, Tan S, Guo X, Lu H, Qi Z et al. 3-hydroxyphthalic anhydride-modified chicken ovalbumin exhibits potent and broad anti-HIV-1 activity: a potential microbicide for preventing sexual transmission of HIV-1. Antimicrob Agents Chemother. 2010;54:1700–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Huang JH, Qi Z, Wu F, Kotula L, Jiang S, Chen YH. Interaction of HIV-1 gp41 core with NPF motif in Epsin: implication in endocytosis of HIV. J Biol Chem. 2008;283:14994–5002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yelena Oksov for her help in performing the TEM experiment. This work was supported by grants from the Natural Science Foundation of China (82072276 and 81772194 to ST, 82073898 and 31370781 to SL, and 81630090 to SJ).

Author information

Authors and Affiliations

Authors

Contributions

S.T., S.L., and S.J. conceived the study. S.T., W.L., C.Y., S.L., and S.J. contributed to the methodology. S.T., W.L., C.Y., Q.Z., K.L., J.L., Z.L., and F.Y. performed the experiments and analyzed the data. Y.Y.L., Y.X.D., J.L., Y.M.J., J.S.B., L.W., Y.T.Z., T.Z., and J.W. collected the clinical samples. S.T., S.L., and S.J. acquired the funding S.T., S.L., and S.J. supervised the study. S.T., W.L., and C.Y. drafted the manuscript. S.T., S.L., S.J., L.L., and L.L. reviewed and edited the manuscript.

Corresponding authors

Correspondence to Suiyi Tan, Shibo Jiang or Shuwen Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, S., Li, W., Yang, C. et al. gp120-derived amyloidogenic peptides form amyloid fibrils that increase HIV-1 infectivity. Cell Mol Immunol (2024). https://doi.org/10.1038/s41423-024-01144-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41423-024-01144-y

Keywords

Search

Quick links