Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Insm1 regulates mTEC development and immune tolerance

Abstract

The expression of self-antigens in medullary thymic epithelial cells (mTECs) is essential for the establishment of immune tolerance, but the regulatory network that controls the generation and maintenance of the multitude of cell populations expressing self-antigens is poorly understood. Here, we show that Insm1, a zinc finger protein with known functions in neuroendocrine and neuronal cells, is broadly coexpressed with an autoimmune regulator (Aire) in mTECs. Insm1 expression is undetectable in most mimetic cell populations derived from mTECs but persists in neuroendocrine mimetic cells. Mutation of Insm1 in mice downregulated Aire expression, dysregulated the gene expression program of mTECs, and altered mTEC subpopulations and the expression of tissue-restricted antigens. Consistent with these findings, loss of Insm1 resulted in autoimmune responses in multiple peripheral tissues. We found that Insm1 regulates gene expression in mTECs by binding to chromatin. Interestingly, the majority of the Insm1 binding sites are co-occupied by Aire and enriched in superenhancer regions. Together, our data demonstrate the important role of Insm1 in the regulation of the repertoire of self-antigens needed to establish immune tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Takahama Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol. 2006;6:127–35.

    Article  CAS  PubMed  Google Scholar 

  2. Alves NL, Takahama Y, Ohigashi I, Ribeiro AR, Baik S, Anderson G, et al. Serial progression of cortical and medullary thymic epithelial microenvironments. Eur J Immunol. 2014;44:16–22.

    Article  CAS  PubMed  Google Scholar 

  3. Kyewski B, Derbinski J. Self-representation in the thymus: an extended view. Nat Rev Immunol. 2004;4:688–98.

    Article  CAS  PubMed  Google Scholar 

  4. Ramsey C, Winqvist O, Puhakka L, Halonen M, Moro A, Kampe O, et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet. 2002;11:397–409.

    Article  CAS  PubMed  Google Scholar 

  5. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298:1395–401.

    Article  CAS  PubMed  Google Scholar 

  6. Wells KL, Miller CN, Gschwind AR, Wei W, Phipps JD, Anderson MS, et al. Combined transient ablation and single-cell RNA-sequencing reveals the development of medullary thymic epithelial cells. Elife. 2020;9:e60188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Michelson DA, Hase K, Kaisho T, Benoist C, Mathis D. Thymic epithelial cells co-opt lineage-defining transcription factors to eliminate autoreactive T cells. Cell. 2022;185:2542–58 e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dhalla F, Baran-Gale J, Maio S, Chappell L, Hollander GA, Ponting CP. Biologically indeterminate yet ordered promiscuous gene expression in single medullary thymic epithelial cells. EMBO J. 2020;39:e101828.

    Article  CAS  PubMed  Google Scholar 

  9. Miller CN, Proekt I, von Moltke J, Wells KL, Rajpurkar AR, Wang H, et al. Thymic tuft cells promote an IL-4- enriched medulla and shape thymocyte development. Nature. 2018;559:627–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bornstein C, Nevo S, Giladi A, Kadouri N, Pouzolles M, Gerbe F, et al. Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature. 2018;559:622–6.

    Article  CAS  PubMed  Google Scholar 

  11. Michelson DA, Mathis D. Thymic mimetic cells: tolerogenic masqueraders. Trends Immunol. 2022;43:782–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chuprin A, Avin A, Goldfarb Y, Herzig Y, Levi B, Jacob A, et al. The deacetylase Sirt1 is an essential regulator of Aire-mediated induction of central immunological tolerance. Nat Immunol. 2015;16:737–45.

    Article  CAS  PubMed  Google Scholar 

  13. Matsumoto M, Nishikawa Y, Nishijima H, Morimoto J, Matsumoto M, Mouri Y. Which model better fits the role of aire in the establishment of self-tolerance: the transcription model or the maturation model? Front Immunol. 2013;4:210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Giraud M, Yoshida H, Abramson J, Rahl PB, Young RA, Mathis D, et al. Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc Natl Acad Sci USA. 2012;109:535–40.

    Article  CAS  PubMed  Google Scholar 

  15. Danso-Abeam D, Humblet-Baron S, Dooley J, Liston A. Models of aire-dependent gene regulation for thymic negative selection. Front Immunol. 2011;2:14.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Abramson J, Giraud M, Benoist C, Mathis D. Aire’s partners in the molecular control of immunological tolerance. Cell. 2010;140:123–35.

    Article  CAS  PubMed  Google Scholar 

  17. Anderson AO, Shaw S. Conduit for privileged communications in the lymph node. Immunity. 2005;22:3–5.

    Article  CAS  PubMed  Google Scholar 

  18. Koh AS, Miller EL, Buenrostro JD, Moskowitz DM, Wang J, Greenleaf WJ, et al. Rapid chromatin repression by Aire provides precise control of immune tolerance. Nat Immunol. 2018;19:162–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bansal K, Yoshida H, Benoist C, Mathis D. The transcriptional regulator Aire binds to and activates superenhancers. Nat Immunol. 2017;18:263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guerau-de-Arellano M, Martinic M, Benoist C, Mathis D. Neonatal tolerance revisited: a perinatal window for Aire control of autoimmunity. J Exp Med. 2009;206:1245–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gabler J, Arnold J, Kyewski B. Promiscuous gene expression and the developmental dynamics of medullary thymic epithelial cells. Eur J Immunol. 2007;37:3363–72.

    Article  PubMed  Google Scholar 

  22. Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science. 2015;348:589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baran-Gale J, Morgan MD, Maio S, Dhalla F, Calvo-Asensio I, Deadman ME, et al. Ageing compromises mouse thymus function and remodels epithelial cell differentiation. Elife. 2020;9:e56221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Herzig Y, Nevo S, Bornstein C, Brezis MR, Ben-Hur S, Shkedy A, et al. Transcriptional programs that control expression of the autoimmune regulator gene Aire. Nat Immunol. 2017;18:161–72.

    Article  CAS  PubMed  Google Scholar 

  25. Gierl MS, Karoulias N, Wende H, Strehle M, Birchmeier C. The zinc-finger factor Insm1 (IA-1) is essential for the development of pancreatic beta cells and intestinal endocrine cells. Genes Dev. 2006;20:2465–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jia S, Wildner H, Birchmeier C. Insm1 controls the differentiation of pulmonary neuroendocrine cells by repressing Hes1. Dev Biol. 2015;408:90–8.

    Article  CAS  PubMed  Google Scholar 

  27. Jia S, Ivanov A, Blasevic D, Muller T, Purfurst B, Sun W, et al. Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic beta-cell function. EMBO J. 2015;34:1417–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Welcker JE, Hernandez-Miranda LR, Paul FE, Jia S, Ivanov A, Selbach M, et al. Insm1 controls development of pituitary endocrine cells and requires a SNAG domain for function and for recruitment of histone-modifying factors. Development. 2013;140:4947–58.

    Article  CAS  PubMed  Google Scholar 

  29. Anderson G, Baik S, Cowan JE, Holland AM, McCarthy NI, Nakamura K, et al. Mechanisms of thymus medulla development and function. Curr Top Microbiol Immunol. 2014;373:19–47.

    CAS  PubMed  Google Scholar 

  30. Derbinski J, Schulte A, Kyewski B, Klein L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat Immunol. 2001;2:1032–9.

    Article  CAS  PubMed  Google Scholar 

  31. Tomofuji Y, Takaba H, Suzuki HI, Benlaribi R, Martinez CDP, Abe Y, et al. Chd4 choreographs self-antigen expression for central immune tolerance. Nat Immunol. 2020;21:892–901.

    Article  CAS  PubMed  Google Scholar 

  32. Takaba H, Morishita Y, Tomofuji Y, Danks L, Nitta T, Komatsu N, et al. Fezf2 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance. Cell. 2015;163:975–87.

    Article  CAS  PubMed  Google Scholar 

  33. Lattin JE, Schroder K, Su AI, Walker JR, Zhang J, Wiltshire T, et al. Expression analysis of G Protein-Coupled Receptors in mouse macrophages. Immunome Res. 2008;4:5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Goldfarb Y, Givony T, Kadouri N, Dobes J, Peligero-Cruz C, Zalayat I, et al. Mechanistic dissection of dominant AIRE mutations in mouse models reveals AIRE autoregulation. J Exp Med. 2021;218:e20201076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. LaFlam TN, Seumois G, Miller CN, Lwin W, Fasano KJ, Waterfield M, et al. Identification of a novel cisregulatory element essential for immune tolerance. J Exp Med. 2015;212:1993–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Murumagi A, Vahamurto P, Peterson P. Characterization of regulatory elements and methylation pattern of the autoimmune regulator (AIRE) promoter. J Biol Chem. 2003;278:19784–90.

    Article  PubMed  Google Scholar 

  37. Wang J, Chen G, Cui Q, Song E, Tao W, Chen W, et al. Renal Subcapsular Transplantation of 2'- Deoxyguanosine-Treated Murine Embryonic Thymus in Nude Mice. J Vis Exp. 2019:e59657, https://doi.org/10.3791/59657.

  38. St-Pierre C, Trofimov A, Brochu S, Lemieux S, Perreault C. Differential Features of AIRE-Induced and AIREIndependent Promiscuous Gene Expression in Thymic Epithelial Cells. J Immunol. 2015;195:498–506.

    Article  CAS  PubMed  Google Scholar 

  39. Kont V, Laan M, Kisand K, Merits A, Scott HS, Peterson P. Modulation of Aire regulates the expression of tissue-restricted antigens. Mol Immunol. 2008;45:25–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fornari TA, Donate PB, Macedo C, Marques MM, Magalhaes DA, Passos GA. Age-related deregulation of Aire and peripheral tissue antigen genes in the thymic stroma of non-obese diabetic (NOD) mice is associated with autoimmune type 1 diabetes mellitus (DM-1). Mol Cell Biochem. 2010;342:21–8.

    Article  CAS  PubMed  Google Scholar 

  41. Oliveira EH, Macedo C, Collares CV, Freitas AC, Donate PB, Sakamoto-Hojo ET, et al. Aire Downregulation Is Associated with Changes in the Posttranscriptional Control of Peripheral Tissue Antigens in Medullary Thymic Epithelial Cells. Front Immunol. 2016;7:526.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Oven I, Brdickova N, Kohoutek J, Vaupotic T, Narat M, Peterlin BM. AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells. Mol Cell Biol. 2007;27:8815–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seach N, Wong K, Hammett M, Boyd RL, Chidgey AP. Purified enzymes improve isolation and characterization of the adult thymic epithelium. J Immunol Methods. 2012;385:23–34.

    Article  CAS  PubMed  Google Scholar 

  44. Dohr D, Engelmann R, Muller-Hilke B. A novel method to efficiently isolate medullary thymic epithelial cells from murine thymi based on UEA-1 MicroBeads. J Immunol Methods. 2019;467:12–8.

    Article  CAS  PubMed  Google Scholar 

  45. Griger J, Schneider R, Lahmann I, Schowel V, Keller C, Spuler S, et al. Loss of Ptpn11 (Shp2) drives satellite cells into quiescence. Elife. 2017;6:e21552.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  47. Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    Article  CAS  PubMed  Google Scholar 

  48. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Alexa A, Rahnenführer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22:1600-7. https://doi.org/10.1093/bioinformatics/btl140.

  50. Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun. 2019;10:1930.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i90.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19:15.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Carmen Birchmeier (Max-Delbrück-Center for Molecular Medicine, Germany) for helpful discussions at the initiation of the project, for sharing the Insm1+/lacZ Insm1+/flox animals and for critical reading of the manuscript. The authors thank Dr. St-Pierre, C (University of Montreal) and Prof. Perreault, C (University of Montreal) for kindly sharing detailed information on TRAs. The authors thank Prof. Diane Mathis (Harvard Medical School) for providing the superenhancer coordinates. The authors thank Prof. Yuanzhi Lu (Department of Pathology, The First Affiliated Hospital of Jinan University) for help in analyzing lymphocyte infiltration.

Funding

This work was supported by the National Natural Science Foundation of China (31970856), the Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University (JNU1AF-CFTP-2022-a01236) and the Science and Technology Program of Guangzhou (202201020042).

Author information

Authors and Affiliations

Authors

Contributions

WT designed the study and performed the molecular experiments. ZY and YW contributed to the animal experiments, tissue analysis and flow cytometry analysis. ZY, YW, JW, WY, and GY contributed to the molecular, cellular and histological experiments. JX performed and managed the bioinformatic analysis and participated in manuscript preparation. SJ supervised the project, analyzed the data and wrote the manuscript. SJ is the guarantor of this work and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding authors

Correspondence to Jieyi Xiong or Shiqi Jia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, W., Ye, Z., Wei, Y. et al. Insm1 regulates mTEC development and immune tolerance. Cell Mol Immunol 20, 1472–1486 (2023). https://doi.org/10.1038/s41423-023-01102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-023-01102-0

Keywords

This article is cited by

Search

Quick links