Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wip1 inhibits neutrophil extracellular traps to promote abscess formation in mice by directly dephosphorylating Coronin-1a

Abstract

Neutrophil extracellular traps (NETs) participate in the rapid inhibition and clearance of pathogens during infection; however, the molecular regulation of NET formation remains poorly understood. In the current study, we found that inhibition of the wild-type p53-induced phosphatase 1 (Wip1) significantly suppressed the activity of Staphylococcus aureus (S. aureus) and accelerated abscess healing in S. aureus-induced abscess model mice by enhancing NET formation. A Wip1 inhibitor significantly enhanced NET formation in mouse and human neutrophils in vitro. High-resolution mass spectrometry and biochemical assays demonstrated that Coro1a is a substrate of Wip1. Further experiments also revealed that Wip1 preferentially and directly interacts with phosphorylated Coro1a than compared to unphosphorylated inactivated Coro1a. The phosphorylated Ser426 site of Coro1a and the 28–90 aa domain of Wip1 are essential for the direct interaction of Coro1a and Wip1 and for Wip1 dephosphorylation of p-Coro1a Ser426. Wip1 deletion or inhibition in neutrophils significantly upregulated the phosphorylation of Coro1a-Ser426, which activated phospholipase C and subsequently the calcium pathway, the latter of which promoted NET formation after infection or lipopolysaccharide stimulation. This study revealed Coro1a to be a novel substrate of Wip1 and showed that Wip1 is a negative regulator of NET formation during infection. These results support the potential application of Wip1 inhibitors to treat bacterial infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A Wip1 inhibitor alleviates S. aureus-induced abscesses in mice.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The microarray data reported in this paper have been deposited in OMIX, China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (https://ngdc.cncb.ac.cn/search/: accession No. PRJCA012098)

References

  1. Hu X, Wang P, Du J, Yang F, Tian Y, Shen X, et al. Phosphatase Wip1 masters IL-17-producing neutrophil-mediated colitis in mice. Inflamm Bowel Dis. 2016;22:1316–25.

    Article  PubMed  Google Scholar 

  2. Wang P, Su H, Zhang L, Chen H, Hu X, Yang F, et al. Phosphatase wild-type p53-induced phosphatase 1 controls the development of TH9 cells and allergic airway inflammation. J Allergy Clin Immunol. 2018;141:2168–81.

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y, Li Y, Guo H, Zhang Z, Zhang J, Dong X, et al. The effects of adoptively transferred IL-23/IL-18-polarized neutrophils on tumor and collagen-induced arthritis in mice. J Inflamm Res. 2021;14:4669–86.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs THerapeutics. Clin Rev Allergy Immunol. 2021;61:194–211.

    Article  CAS  PubMed  Google Scholar 

  5. Chu Z, Sun C, Sun L, Feng C, Yang F, Xu Y, et al. Primed macrophages directly and specifically reject allografts. Cell Mol Immunol. 2020;17:237–46.

    Article  CAS  PubMed  Google Scholar 

  6. Herrero-Cervera A, Soehnlein O, Kenne E. Neutrophils in chronic inflammatory diseases. Cell Mol Immunol. 2022;19:177–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu K, Wang FS, Xu RN. Neutrophils in liver diseases: pathogenesis and therapeutic targets. Cell Mol Immunol. 2021;18:38–44.

    Article  CAS  PubMed  Google Scholar 

  8. Parker H, Winterbourn CC. Reactive oxidants and myeloperoxidase and their involvement in neutrophil extracellular traps. Front Immunol. 2013;3:424.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hawez A, Al-Haidari A, Madhi R, Rahman M, Thorlacius H. MiR-155 regulates PAD4-dependent formation of neutrophil extracellular traps. Front Immunol. 2019;10:2462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science 2004;303:1532–5.

    Article  CAS  PubMed  Google Scholar 

  11. Delgado-Rizo V, Martinez-Guzman MA, Iniguez-Gutierrez L, Garcia-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol. 2017;8:81.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012;189:2689–95.

    Article  CAS  PubMed  Google Scholar 

  13. Vorobjeva NV, Chernyak BV. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry. 2020;85:1178–90.

    CAS  PubMed  Google Scholar 

  14. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18:134–47.

    Article  CAS  PubMed  Google Scholar 

  15. Moschonas IC, Tselepis AD. The pathway of neutrophil extracellular traps towards atherosclerosis and thrombosis. Atherosclerosis. 2019;288:9–16.

    Article  CAS  PubMed  Google Scholar 

  16. Chen W, Tan Y, Zhang Y. p38 MAPK signaling pathway activation by phenyl benzoxime in SNU-306 cells causes induction of apoptosis. Micro Pathog. 2019;126:74–78.

    Article  CAS  Google Scholar 

  17. Rasmussen MK, Nielsen J, Kjellerup RB, Andersen SM, Rittig AH, Johansen C, et al. Protein phosphatase 2Cdelta/Wip1 regulates phospho-p90RSK2 activity in lesional psoriatic skin. J Inflamm Res. 2017;10:169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Torii S, Yoshida T, Arakawa S, Honda S, Nakanishi A, Shimizu S. Identification of PPM1D as an essential Ulk1 phosphatase for genotoxic stress-induced autophagy. EMBO Rep. 2016;17:1552–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wamsley JJ, Issaeva N, An HB, Lu XY, Donehower LA, Yarbrough WG. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle. 2017;16:213–23.

    Article  CAS  PubMed  Google Scholar 

  20. Choi BK, Fujiwara K, Dayaram T, Darlington Y, Dickerson J, Goodell MA, et al. WIP1 dephosphorylation of p27(Kip1) Serine 140 destabilizes p27(Kip1) and reverses anti-proliferative effects of ATM phosphorylation. Cell Cycle. 2020;19:479–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi J, Nannenga B, Demidov ON, Bulavin DV, Cooney A, Brayton C, et al. Mice deficient for the wild-type p53-induced phosphatase gene (Wip1) exhibit defects in reproductive organs, immune function, and cell cycle control. Mol Cell Biol. 2002;22:1094–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen XF, Zhao Y, Cao K, Guan WX, Li X, Zhang Q, et al. Wip1 deficiency promotes neutrophil recruitment to the infection site and improves sepsis outcome. Front Immunol. 2017;8:1023.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shi L, Tian Q, Feng C, Zhang P, Zhao Y. The biological function and the regulatory roles of wild-type p53-induced phosphatase 1 in immune system. Int Rev Immunol. 2020;39:280–91.

    Article  CAS  PubMed  Google Scholar 

  24. Sun B, Hu X, Liu G, Ma B, Xu Y, Yang T, et al. Phosphatase Wip1 negatively regulates neutrophil migration and inflammation. J Immunol. 2014;192:1184–95.

    Article  CAS  PubMed  Google Scholar 

  25. Liu G, Hu X, Sun B, Yang T, Shi J, Zhang L, et al. Phosphatase Wip1 negatively regulates neutrophil development through p38 MAPK-STAT1. Blood 2013;121:519–29.

    Article  CAS  PubMed  Google Scholar 

  26. Sun L, Li H, Luo H, Zhang L, Hu X, Yang T, et al. Phosphatase Wip1 is essential for the maturation and homeostasis of medullary thymic epithelial cells in mice. J Immunol. 2013;191:3210–20.

    Article  CAS  PubMed  Google Scholar 

  27. Du J, Shen X, Zhao Y, Hu X, Sun B, Guan W, et al. Wip1-deficient neutrophils significantly promote intestinal ischemia/reperfusion injury in mice. Curr Mol Med. 2015;15:100–8.

    Article  CAS  PubMed  Google Scholar 

  28. Xu Y, Zhang Z, Zhao Y, Zhao C, Shi M, Dong X, et al. TRAPPC1 is essential for the maintenance and differentiation of common myeloid progenitors in mice. EMBO Rep. 2023;24:e55503.

    Article  CAS  PubMed  Google Scholar 

  29. Kobayashi S, Ikeura T, Takaoka M. Gastric wall abscess formation after endoscopic ultrasound-guided fine-needle aspiration of pancreatic cancer. Digestive Endosc. 2016;28:220–220.

    Article  Google Scholar 

  30. Hou Y, Zhu L, Tian H, Sun HX, Wang R, Zhang L, et al. IL-23-induced macrophage polarization and its pathological roles in mice with imiquimod-induced psoriasis. Protein Cell. 2018;9:1027–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dong X, Liang Z, Zhang J, Zhang Q, Xu Y, Zhang Z, et al. Trappc1 deficiency impairs thymic epithelial cell development by breaking endoplasmic reticulum homeostasis. Eur J Immunol. 2022;52:1789–804.

    Article  CAS  PubMed  Google Scholar 

  32. Chu Z, Feng C, Sun C, Xu Y, Zhao Y. Primed macrophages gain long-term specific memory to reject allogeneic tissues in mice. Cell Mol Immunol. 2021;18:1079–81.

    Article  CAS  PubMed  Google Scholar 

  33. Lei T, Zhang J, Zhang Q, Ma X, Xu Y, Zhao Y, et al. Defining newly formed and tissue-resident bone marrow-derived macrophages in adult mice based on lysozyme expression. Cell Mol Immunol. 2022;19:1333–46.

    Article  CAS  PubMed  Google Scholar 

  34. Sun B, Zhu L, Tao Y, Sun HX, Li Y, Wang P, et al. Characterization and allergic role of IL-33-induced neutrophil polarization. Cell Mol Immunol. 2018;15:782–93.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li Y, Zhu L, Chu Z, Yang T, Sun HX, Yang F, et al. Characterization and biological significance of IL-23-induced neutrophil polarization. Cell Mol Immunol. 2018;15:518–30.

    Article  CAS  PubMed  Google Scholar 

  36. Nadesalingam A, Chen JHK, Farahvash A, Khan MA. Hypertonic saline suppresses NADPH oxidase-dependent neutrophil extracellular trap formation and promotes apoptosis. Front Immunol. 2018;9:359.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Han XA, Jie HY, Wang JH, Zhang XM, Wang J, Yu CX, et al. Necrostatin-1 ameliorates neutrophilic inflammation in asthma by suppressing MLKL phosphorylation to inhibiting NETs release. Front Immunol. 2020;11:666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wei Z, Yu T, Wang J, Wang C, Liu X, Han Z, et al. Swine sperm induces neutrophil extracellular traps that entangle sperm and embryos. Reproduction. 2020;160:217–25.

    Article  CAS  PubMed  Google Scholar 

  39. Liang Z, Zhang Q, Dong X, Zhang Z, Wang H, Zhang J, et al. mTORC2 negatively controls the maturation process of medullary thymic epithelial cells by inhibiting the LTbetaR/RANK-NF-kappaB axis. J Cell Physiol. 2021;236:4725–37.

    Article  CAS  PubMed  Google Scholar 

  40. Souza ACM, Grabe-Guimaraes A, Cruz JDS, Santos-Miranda A, Farah C, Teixeira Oliveira L, et al. Mechanisms of artemether toxicity on single cardiomyocytes and protective effect of nanoencapsulation. Br J Pharmacol. 2020;177:4448–63.

    Article  Google Scholar 

  41. Yang T, Zhu L, Zhai Y, Zhao Q, Peng J, Zhang H, et al. TSC1 controls IL-1beta expression in macrophages via mTORC1-dependent C/EBPbeta pathway. Cell Mol Immunol. 2016;13:640–50.

    Article  CAS  PubMed  Google Scholar 

  42. Tape CJ, Worboys JD, Sinclair J, Gourlay R, Vogt J, McMahon KM, et al. Reproducible automated phosphopeptide enrichment using magnetic TiO2 and Ti-IMAC. Anal Chem. 2014;86:10296–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen Y, Hoehenwarter W, Weckwerth W. Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. Plant J. 2010;63:1–17.

    CAS  PubMed  Google Scholar 

  44. Li H, Zeng J, Huang L, Wu D, Liu L, Liu Y, et al. Microarray analysis of gene expression changes in neuroplastin 65-knockout mice: implications for abnormal cognition and emotional disorders. Neurosci Bull. 2018;34:779–88.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shi L, Tian H, Wang P, Li L, Zhang Z, Zhang J, et al. Spaceflight and simulated microgravity suppresses macrophage development via altered RAS/ERK/NFkappaB and metabolic pathways. Cell Mol Immunol. 2021;18:1489–502.

    Article  CAS  PubMed  Google Scholar 

  46. Davis IW, Raha K, Head MS, Baker D. Blind docking of pharmaceutically relevant compounds using RosettaLigand. Protein Sci. 2009;18:1998–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fleishman SJ, Leaver-Fay A, Corn JE, Strauch EM, Khare SD, Koga N, et al. RosettaScripts: a scripting language interface to the rosetta macromolecular modeling suite. PLos ONE. 2011;6:e20161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim S, Mohapatra G, Haber DA. In vitro phosphorylation of BRCA2 by the checkpoint kinase CHEK2. Br J Cancer. 2008;99:1302–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miller PG, Sathappa M, Moroco JA, Jiang W, Qian Y, Iqbal S, et al. Allosteric inhibition of PPM1D serine/threonine phosphatase via an altered conformational state. Nat Commun. 2022;13:3778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gilmartin AG, Faitg TH, Richter M, Groy A, Seefeld MA, Darcy MG, et al. Allosteric Wip1 phosphatase inhibition through flap-subdomain interaction. Nat Chem Biol. 2014;10:181.

    Article  CAS  PubMed  Google Scholar 

  51. Esfandiari A, Hawthorne TA, Nakjang S, Lunec J. Chemical inhibition of wild-type p53-induced phosphatase 1 (WIP1/PPM1D) by GSK2830371 potentiates the sensitivity to MDM2 inhibitors in a p53-dependent manner. Mol Cancer Ther. 2016;15:379–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pechackova S, Burdova K, Benada J, Kleiblova P, Jenikova G, Macurek L. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget. 2016;7:14458–75.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Deng Q, Pan B, Alam HB, Liang Y, Wu Z, Liu B, et al. Citrullinated histone H3 as a therapeutic target for endotoxic shock in mice. Front Immunol. 2020;10:2957.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hann J, Bueb JL, Tolle F, Brechard S. Calcium signaling and regulation of neutrophil functions: still a long way to go. J Leukoc Biol. 2020;107:285–97.

    Article  CAS  PubMed  Google Scholar 

  55. Douda DN, Khan MA, Grasemann H, Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc Natl Acad Sci USA. 2015;112:2817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Foger N, Jenckel A, Orinska Z, Lee KH, Chan AC, Bulfone-Paus S. Differential regulation of mast cell degranulation versus cytokine secretion by the actin regulatory proteins Coronin1a and Coronin1b. J Exp Med. 2011;208:1777–87.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Suo D, Park J, Young S, Makita T, Deppmann CD. Coronin-1 and calcium signaling governs sympathetic final target innervation. J Neurosci. 2015;35:3893–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Oku T, Nakano M, Kaneko Y, Ando Y, Kenmotsu H, Itoh S, et al. Constitutive turnover of phosphorylation at Thr-412 of human p57/Coronin-1 regulates the interaction with actin. J Biol Chem. 2012;287:42910–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Suo D, Park J, Harrington AW, Zweifel LS, Mihalas S, Deppmann CD. Coronin-1 is a neurotrophin endosomal effector that is required for developmental competition for survival. Nat Neurosci. 2014;17:36–45.

    Article  CAS  Google Scholar 

  60. Rungelrath V, DeLeo FR. Staphylococcus aureus, antibiotic resistance, and the interaction with human neutrophils. Antioxid Redox Signal. 2021;34:452–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cassini A, Hogberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19:56–66.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lee BY, Singh A, David MZ, Bartsch SM, Slayton RB, Huang SS, et al. The economic burden of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). Clin Microbiol Infect. 2013;19:528–36.

    Article  CAS  PubMed  Google Scholar 

  63. Menegazzi R, Decleva E, Dri P. Killing by neutrophil extracellular traps: fact or folklore? Blood 2012;119:1214–6.

    Article  CAS  PubMed  Google Scholar 

  64. Lee KH, Kronbichler A, Park DD, Park Y, Moon H, Kim H, et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun Rev. 2017;16:1160–73.

    Article  CAS  PubMed  Google Scholar 

  65. Hook JS, Patel PA, O’Malley A, Xie L, Kavanaugh JS, Horswill AR, et al. Lipoproteins from Staphylococcus aureus drive neutrophil extracellular trap formation in a TLR2/1-and PAD-dependent manner. J Immunol. 2021;207:966–73.

    Article  CAS  PubMed  Google Scholar 

  66. Cho SJ, Cha BS, Kwon OS, Lim J, Shin DM, Han DW, et al. Wip1 directly dephosphorylates NLK and increases Wnt activity during germ cell development. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1013–22.

    Article  CAS  PubMed  Google Scholar 

  67. Park DS, Yoon GH, Kim EY, Lee T, Kim K, Lee PC, et al. Wip1 regulates Smad4 phosphorylation and inhibits TGF-beta signaling. EMBO Rep. 2020;21:e48693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Humphries CL, Balcer HI, D’Agostino JL, Winsor B, Drubin DG, Barnes G, et al. Direct regulation of Arp2/3 complex activity and function by the actin binding protein coronin. J Cell Biol. 2002;159:993–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rybakin V, Clemen CS. Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. Bioessays. 2005;27:625–32.

    Article  CAS  PubMed  Google Scholar 

  70. Uetrecht AC, Bear JE. Coronins: the return of the crown. Trends Cell Biol. 2006;16:421–6.

    Article  CAS  PubMed  Google Scholar 

  71. Clemen CS, Rybakin V, Eichinger L. The coronin family of proteins. Subcell Biochem. 2008;48:1–5.

    Article  PubMed  Google Scholar 

  72. Jayachandran R, Sundaramurthy V, Combaluzier B, Mueller P, Korf H, Huygen K, et al. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell. 2007;130:37–50.

    Article  CAS  PubMed  Google Scholar 

  73. Mueller P, Massner J, Jayachandran R, Combaluzier B, Albrecht I, Gatfield J, et al. Regulation of T cell survival through coronin-1-mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. Nat Immunol. 2008;9:424–31.

    Article  CAS  PubMed  Google Scholar 

  74. de Bont CM, Koopman WJH, Boelens WC, Pruijn GJM. Stimulus-dependent chromatin dynamics, citrullination, calcium signalling and ROS production during NET formation. Biochim Biophys Acta Mol Cell Res. 2018;1865:1621–9. 11 Pt A

    Article  PubMed  Google Scholar 

  75. Deng W, Lei Y, Tang X, Li D, Liang J, Luo J, et al. DNase inhibits early biofilm formation in Pseudomonas aeruginosa- or Staphylococcus aureus-induced empyema models. Front Cell Infect Microbiol. 2022;12:917038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hart JW, Waigh TA, Lu JR, Roberts IS. Microrheology and spatial heterogeneity of Staphylococcus aureus biofilms modulated by hydrodynamic shear and biofilm-degrading enzymes. Langmuir. 2019;35:3553–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Mrs. Ling Li for her excellent laboratory management. The work was supported by grants from the National Natural Science Foundation for General and Key Programs (31930041, YZ), the National Key Research and Development Program of China (2017YFA0105002, 2017YFA0104401, 2017YFA0104402, YZ), the Knowledge Innovation Program of the Chinese Academy of Sciences (XDA16030301, YZ), and the Doctoral Research Foundation Project of Affiliated Hospital of Guizhou Medical University (gyfybsky-2022–1, WZ)

Author information

Authors and Affiliations

Authors

Contributions

YC, CZ, and HG designed and performed in vitro and in vivo experiments, analyzed the data and wrote the manuscript. WZ supervised the study and revised the manuscript. ZZ analyzed the bioinformatics data. DW carried out some cellular experiments. HL discussed the studies and experimental design and revised the manuscript. LZ provided Wip1KO mice, discussed the study, and revised the manuscript. YZ conceptualized the project, analyzed the data and revised the manuscript.

Corresponding authors

Correspondence to Hezhe Lu, Lianfeng Zhang or Yong Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhao, C., Guo, H. et al. Wip1 inhibits neutrophil extracellular traps to promote abscess formation in mice by directly dephosphorylating Coronin-1a. Cell Mol Immunol 20, 941–954 (2023). https://doi.org/10.1038/s41423-023-01057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-023-01057-2

Keywords

Search

Quick links