Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Expanded clinical-grade NK cells exhibit stronger effects than primary NK cells against HCMV infection

Abstract

Cytomegalovirus (CMV) reactivation remains a common complication and leads to high mortality in patients who undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT). Early natural killer (NK) cell reconstitution may protect against the development of human CMV (HCMV) infection post-HSCT. Our previous data showed that ex vivo mbIL21/4-1BBL-expanded NK cells exhibited high cytotoxicity against leukemia cells. Nevertheless, whether expanded NK cells have stronger anti-HCMV function is unknown. Herein, we compared the anti-HCMV functions of ex vivo expanded NK cells and primary NK cells. Expanded NK cells showed higher expression of activating receptors, chemokine receptors and adhesion molecules; stronger cytotoxicity against HCMV-infected fibroblasts; and better inhibition of HCMV propagation in vitro than primary NK cells. In HCMV-infected humanized mice, expanded NK cell infusion resulted in higher NK cell persistence and more effective tissue HCMV elimination than primary NK cell infusion. A clinical cohort of 20 post-HSCT patients who underwent adoptive NK cell infusion had a significantly lower cumulative incidence of HCMV infection (HR = 0.54, 95% CI = 0.32–0.93, p = 0.042) and refractory HCMV infection (HR = 0.34, 95% CI = 0.18–0.65, p = 0.009) than controls and better NK cell reconstitution on day 30 post NK cell infusion. In conclusion, expanded NK cells exhibit stronger effects than primary NK cells against HCMV infection both in vivo and in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang Y, Chang YJ, Xu LP, Liu KY, Liu DH, Zhang XH, et al. Who is the best donor for a related HLA haplotype-mismatched transplant? Blood. 2014;124:843–50.

    Article  CAS  PubMed  Google Scholar 

  2. El Chaer F, Shah DP, Chemaly RF. How I treat resistant cytomegalovirus infection in hematopoietic cell transplantation recipients. Blood. 2016;128:2624–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kharfan-Dabaja MA, Boeckh M, Wilck MB, Langston AA, Chu AH, Wloch MK, et al. A novel therapeutic cytomegalovirus DNA vaccine in allogeneic haemopoietic stem-cell transplantation: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Infect Dis. 2012;12:290–9.

    Article  CAS  PubMed  Google Scholar 

  4. Teira P, Battiwalla M, Ramanathan M, Barrett AJ, Ahn KW, Chen M, et al. Early cytomegalovirus reactivation remains associated with increased transplant-related mortality in the current era: a CIBMTR analysis. Blood. 2016;127:2427–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hill JA, Mayer BT, Xie H, Leisenring WM, Huang ML, Stevens-Ayers T, et al. The cumulative burden of double-stranded DNA virus detection after allogeneic HCT is associated with increased mortality. Blood. 2017;129:2316–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Broers AE, van Der Holt R, van Esser JW, Gratama JW, Henzen-Logmans S, Kuenen-Boumeester V, et al. Increased transplant-related morbidity and mortality in CMV-seropositive patients despite highly effective prevention of CMV disease after allogeneic T-cell-depleted stem cell transplantation. Blood. 2000;95:2240–5.

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Kong J, Chang YJ, Chen H, Chen YH, Han W, et al. Patients with refractory cytomegalovirus (CMV) infection following allogeneic haematopoietic stem cell transplantation are at high risk for CMV disease and non-relapse mortality. Clin Microbiol Infect. 2015;21:1121.e9–15.

    Article  CAS  PubMed  Google Scholar 

  8. Liu J, Chang YJ, Yan CH, Xu LP, Jiang ZF, Zhang XH, et al. Poor CMV-specific CD8+ T central memory subset recovery at early stage post-HSCT associates with refractory and recurrent CMV reactivation. J Infect. 2016;73:261–70.

    Article  PubMed  Google Scholar 

  9. Zhao XY, Pei XY, Chang YJ, Yu XX, Xu LP, Wang Y, et al. First-line therapy with donor-derived human cytomegalovirus (HCMV)-specific T cells reduces persistent HCMV infection by promoting antiviral immunity after allogenic stem cell transplantation. Clin Infect Dis. 2020;70:1429–37.

    Article  CAS  PubMed  Google Scholar 

  10. Pei XY, Zhao XY, Chang YJ, Liu J, Xu LP, Wang Y, et al. Cytomegalovirus-specific T-cell transfer for refractory cytomegalovirus infection after haploidentical stem cell transplantation: the quantitative and qualitative immune recovery for cytomegalovirus. J Infect Dis. 2017;216:945–56.

    Article  CAS  PubMed  Google Scholar 

  11. Yu XX, Cao XH, Yan H, Luo XY, Zhao XS, Sun YQ, et al. Delay expression of NKp30 on NK cells correlates with long-term mycophenolate mofetil treatment and higher EBV viremia post allogenic hematological stem cells transplantation. Clin Immunol. 2019;205:49–56.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao X, Chang Y, Xu L, Liu D, Liu K, Wang Y, et al. Rapid early recovery of absolute lymphocyte counts at day 30 can predict reduced risk of relapse in acute lymphoblastic leukemia following haploidentcial allogeneic stem cell transplantation. Chin J Organ Transplant. 2014;35:3–7.

    CAS  Google Scholar 

  13. Forthal DN, Phan T, Landucci G. Antibody inhibition of cytomegalovirus: the role of natural killer and macrophage effector cells. Transpl Infect Dis. 2001;3:31–4.

    Article  PubMed  Google Scholar 

  14. Orange JS, Wang B, Terhorst C, Biron CA. Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med. 1995;182:1045–56.

    Article  CAS  PubMed  Google Scholar 

  15. Bukowski JF, Woda BA, Habu S, Okumura K, Welsh RM. Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol. 1983;131:1531–8.

    Article  CAS  PubMed  Google Scholar 

  16. Bukowski JF, Woda BA, Welsh RM. Pathogenesis of murine cytomegalovirus infection in natural killer cell-depleted mice. J Virol. 1984;52:119–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature. 2009;457:557–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Biron CA, Byron KS, Sullivan JL. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med. 1989;320:1731–5.

    Article  CAS  PubMed  Google Scholar 

  19. Orange JS. Natural killer cell deficiency. J Allergy Clin Immunol. 2013;132:515–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuijpers TW, Baars PA, Dantin C, van den Burg M, van Lier RA, Roosnek E. Human NK cells can control CMV infection in the absence of T cells. Blood. 2008;112:914–5.

    Article  CAS  PubMed  Google Scholar 

  21. Chang YJ, Zhao XY, Huang XJ. Effects of the NK cell recovery on outcomes of unmanipulated haploidentical blood and marrow transplantation for patients with hematologic malignancies. Biol Blood Marrow Transplant. 2008;14:323–34.

    Article  PubMed  Google Scholar 

  22. Zhao XY, Huang XJ, Liu KY, Xu LP, Liu DH. Reconstitution of natural killer cell receptor repertoires after unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation: analyses of CD94:NKG2A and killer immunoglobulin-like receptor expression and their associations with clinical outcome. Biol Blood Marrow Transplant. 2007;13:734–44.

    Article  CAS  PubMed  Google Scholar 

  23. Barron MA, Gao D, Springer KL, Patterson JA, Brunvand MW, McSweeney PA, et al. Relationship of reconstituted adaptive and innate cytomegalovirus (CMV)-specific immune responses with CMV viremia in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2009;49:1777–83.

    Article  CAS  PubMed  Google Scholar 

  24. Foley B, Cooley S, Verneris MR, Pitt M, Curtsinger J, Luo X, et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood. 2012;119:2665–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu X, Xu L, Chang Y, Huang X, Zhao X. Rapid reconstitution of NK1 cells after allogeneic transplantation is associated with a reduced incidence of graft-versus-host disease. Sci China Life Sci. 2018;61:902–11.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao XY, Luo XY, Yu XX, Zhao XS, Han TT, Chang YJ, et al. Recipient-donor KIR ligand matching prevents CMV reactivation post-haploidentical T cell-replete transplantation. Br J Haematol. 2017;177:766–81.

    Article  CAS  PubMed  Google Scholar 

  27. Fang F, Xiao W, Tian Z. NK cell-based immunotherapy for cancer. Semin Immunol. 2017;31:37–54.

    Article  CAS  PubMed  Google Scholar 

  28. Fang F, Xiao W, Tian Z. Challenges of NK cell-based immunotherapy in the new era. Front Med. 2018;12:440–50.

    Article  PubMed  Google Scholar 

  29. Zhao XY, Jiang Q, Jiang H, Hu LJ, Zhao T, Yu XX, et al. Expanded clinical-grade membrane-bound IL-21/4-1BBL NK cell products exhibit activity against acute myeloid leukemia in vivo. Eur J Immunol. 2020;50:1374–85.

    Article  CAS  PubMed  Google Scholar 

  30. Yu XX, Shang QN, Liu XF, He M, Pei XY, Mo XD, et al. Donor NKG2C homozygosity contributes to CMV clearance after haploidentical transplantation. JCI Insight. 2022;7:e149120.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang Y, Liu QF, Xu LP, Liu KY, Zhang XH, Ma X, et al. Haploidentical vs identical-sibling transplant for AML in remission: a multicenter, prospective study. Blood. 2015;125:3956–62.

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Wang HX, Lai YR, Sun ZM, Wu DP, Jiang M, et al. Haploidentical transplant for myelodysplastic syndrome: registry-based comparison with identical sibling transplant. Leukemia. 2016;30:2055–63.

    Article  CAS  PubMed  Google Scholar 

  33. Ojo EO, Sharma AA, Liu R, Moreton S, Checkley-Luttge MA, Gupta K, et al. Membrane bound IL-21 based NK cell feeder cells drive robust expansion and metabolic activation of NK cells. Sci Rep. 2019;9:14916.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fujisaki H, Kakuda H, Shimasaki N, Imai C, Ma J, Lockey T, et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res. 2009;69:4010–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang Y, Badeti S, Tseng HC, Ma MT, Liu T, Jiang JG, et al. Superior expansion and cytotoxicity of human primary NK and CAR-NK cells from various sources via enriched metabolic pathways. Mol Ther Methods Clin Dev. 2020;18:428–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu Z, Sinzger C, Reichel JJ, Just M, Mertens T. Natural killer cells can inhibit the transmission of human cytomegalovirus in cell culture by using mechanisms from innate and adaptive immune responses. J Virol. 2015;89:2906–17.

    Article  PubMed  Google Scholar 

  37. Bjorklund AT, Carlsten M, Sohlberg E, Liu LL, Clancy T, Karimi M, et al. Complete remission with reduction of high-risk clones following haploidentical NK-Cell therapy against MDS and AML. Clin Cancer Res. 2018;24:1834–44.

    Article  CAS  PubMed  Google Scholar 

  38. Bachanova V, Sarhan D, DeFor TE, Cooley S, Panoskaltsis-Mortari A, Blazar BR, et al. Haploidentical natural killer cells induce remissions in non-Hodgkin lymphoma patients with low levels of immune-suppressor cells. Cancer Immunol Immunother. 2018;67:483–94.

    Article  CAS  PubMed  Google Scholar 

  39. Ciurea SO, Schafer JR, Bassett R, Denman CJ, Cao K, Willis D, et al. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood. 2017;130:1857–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sharma SK, Kumar S, Agrawal N, Singh L, Mukherjee A, Seth T, et al. Cytomegalovirus reactivation following hematopoietic stem cell transplantation. J Infect Dev Ctries. 2013;7:1003–7.

    Article  PubMed  Google Scholar 

  41. Zhang Y, Wallace DL, de Lara CM, Ghattas H, Asquith B, Worth A, et al. In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology. 2007;121:258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Merino AM, Kim H, Miller JS, Cichocki F. Unraveling exhaustion in adaptive and conventional NK cells. J Leukoc Biol. 2020;108:1361–8.

    Article  CAS  PubMed  Google Scholar 

  43. Zaghi E, Calvi M, Puccio S, Spata G, Terzoli S, Peano C, et al. Single-cell profiling identifies impaired adaptive NK cells expanded after HCMV reactivation in haploidentical-HSCT. JCI Insight. 2021;6:e146973.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Huenecke S, Zimmermann SY, Kloess S, Esser R, Brinkmann A, Tramsen L. et al. IL-2-driven regulation of NK cell receptors with regard to the distribution of CD16+ and CD16- subpopulations and in vivo influence after haploidentical NK cell infusion. J Immunother. 2010;33:200–10.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao XY, Zhao XS, Wang YT, Chen YH, Xu LP, Zhang XH, et al. Prophylactic use of low-dose interleukin-2 and the clinical outcomes of hematopoietic stem cell transplantation: a randomized study. Oncoimmunology. 2016;5:e1250992.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hirakawa M, Matos TR, Liu H, Koreth J, Kim HT, Paul NE, et al. Low-dose IL-2 selectively activates subsets of CD4(+) Tregs and NK cells. JCI Insight. 2016;1:e89278.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Borysiewicz LK, Morris S, Page JD, Sissons JG. Human cytomegalovirus-specific cytotoxic T lymphocytes: requirements for in vitro generation and specificity. Eur J Immunol. 1983;13:804–9.

    Article  CAS  PubMed  Google Scholar 

  48. Wang D, Fu B, Shen X, Guo C, Liu Y, Zhang J, et al. Restoration of HBV-specific CD8(+) T-cell responses by sequential low-dose IL-2 treatment in non-responder patients after IFN-alpha therapy. Signal Transduct Target Ther. 2021;6:376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mr. Chuan-Yu Zhang (iCELL Co., Ltd., Beijing, China) for his help in the organization of the expansion of NK cells. We also thank BeiGene Co., Ltd. (Beijing, China) for providing anti-PD-1, anti-TIGIT and anti-Tim3 antibodies. This work was supported by the National Key Research and Development Program of China (grant 2022YFA1103300), Major of the National Natural Science Foundation of China (No.82293630), Key Program of the National Natural Science Foundation of China (No. 81930004), and National Natural Science Foundation of China (grants 81870140, 82070184, 82270228 and 81370666). It was further supported through the Peking University People’s Hospital Research and Development Funds (grant RDX2019-14; RDL2021-01). We thank the core facilities at the Peking University Institute of Hematology for sample collection.

Author information

Authors and Affiliations

Authors

Contributions

Q-NS conducted the in vitro experiments and animal experiments and performed the statistical analyses. X-XY conducted flow cytometry assays and facilitated in vitro experiments. Z-LX, Y-HC, T-TH, Y-YZ, ML, Y-QS, YW, L-PX and X-HZ performed the clinical examinations. X-JH and X-YZ designed the study and interpreted the data. X-JH, X-YZ and Q-NS wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiang-Yu Zhao or Xiao-Jun Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, QN., Yu, XX., Xu, ZL. et al. Expanded clinical-grade NK cells exhibit stronger effects than primary NK cells against HCMV infection. Cell Mol Immunol 20, 895–907 (2023). https://doi.org/10.1038/s41423-023-01046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-023-01046-5

Keywords

Search

Quick links