Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Maternal helminth infection protects offspring from high-fat-diet-induced obesity through altered microbiota and SCFAs

Abstract

Helminth-induced Th2 immunity and gut microbiota have been recently shown to be highly effective in modulating metabolic syndromes in animal models. This study aimed to determine whether maternal immunity and microbial factors affect the induction and development of obesity in offspring. Here, Heligomosomoides polygyrus (Hp)-infected or control female C57BL/6J mice mated with normal males and their offspring were fed a high-fat diet (HFD) for 9 weeks after weaning. Our results showed that Hp-induced maternal outcomes during gestation and lactation significantly impacted offspring metabolic phenotypes. This was evidenced by results showing that offspring from helminth-infected mothers on an HFD (Hp-offspring + HFD) gained significantly less body weight than those from uninfected mothers (Cont-offspring + HFD). Hp-offspring + HFD exhibited no Th2 phenotype but displayed a pattern of gut microbiota composition similar to that of Hp-infected mothers. Cross-fostering experiments confirmed that the helminth-induced maternal attenuation of offspring obesity was mediated through both prenatal and postnatal effects. Our results further showed that helminth-infected dams and their offspring had a markedly altered gut microbiome composition, with increased production of short-chain fatty acids (SCFAs). Intriguingly, Hp-infected mothers and Hp-offspring + HFD showed increased SCFA receptor (GPR) expression in adipose and colonic tissues compared to noninfected mothers and Cont-offspring + HFD, respectively. Moreover, SCFA supplementation to the pups of uninfected control mothers during lactation protected against HFD-induced weight gain, which corresponded with changes in gut bacterial colonization. Collectively, our findings provide new insights into the complex interaction of maternal immune status and gut microbiome, Hp infection, and the immunity and gut microbiome in obese-prone offspring in infant life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vahratian A. Prevalence of overweight and obesity among women of childbearing age: results from the 2002 National Survey of Family Growth. Matern Child Health J. 2009;13:268–73.

    Article  PubMed  Google Scholar 

  2. Hillier TA, Pedula KL, Schmidt MM, Mullen JA, Charles MA, Pettitt DJ. Childhood obesity and metabolic imprinting: the ongoing effects of maternal hyperglycemia. Diabetes Care. 2007;30:2287–92.

    Article  PubMed  Google Scholar 

  3. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med. 2009;15:921–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zaccone P, Fehérvári Z, Jones FM, Sidobre S, Kronenberg M, Dunne DW, et al. Schistosoma mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol. 2003;33:1439–49.

    Article  CAS  PubMed  Google Scholar 

  5. Weng M, Huntley D, Huang I-F, Foye-Jackson O, Wang L, Sarkissian A, et al. Alternatively activated macrophages in intestinal helminth infection: effects on concurrent bacterial colitis. J Immunol. 2007;179:4721–31.

    Article  CAS  PubMed  Google Scholar 

  6. Summers RW, Elliott DE, Urban JF Jr, Thompson RA, Weinstock JV. Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology. 2005;128:825–32.

    Article  PubMed  Google Scholar 

  7. Harnett MM, Harnett W. Can parasitic worms cure the modern world’s ills? Trends Parasitol. 2017;33:694–705.

    Article  PubMed  Google Scholar 

  8. Su CW, Chen CY, Li Y, Long SR, Massey W, Kumar DV, et al. Helminth infection protects against high fat diet-induced obesity via induction of alternatively activated macrophages. Sci Rep. 2018;8:4607.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Borzychowski AM, Croy BA, Chan WL, Redman CW, Sargent IL. Changes in systemic type 1 and type 2 immunity in normal pregnancy and pre-eclampsia may be mediated by natural killer cells. Eur J Immunol. 2005;35:3054–63.

    Article  CAS  PubMed  Google Scholar 

  10. Finkelman FD, Shea-Donohue T, Morris SC, Gildea L, Strait R, Madden KB, et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol Rev. 2004;201:139–55.

    Article  CAS  PubMed  Google Scholar 

  11. Su C, Su L, Li Y, Long SR, Chang J, Zhang W, et al. Helminth-induced alterations of the gut microbiota exacerbate bacterial colitis. Mucosal Immunol. 2018;11:144–57.

    Article  CAS  PubMed  Google Scholar 

  12. Maizels RM, Hewitson JP, Murray J, Harcus YM, Dayer B, Filbey KJ, et al. Immune modulation and modulators in Heligmosomoides polygyrus infection. Exp Parasitol. 2012;132:76–89.

    Article  CAS  PubMed  Google Scholar 

  13. Walk ST, Blum AM, Ewing SA, Weinstock JV, Young VB. Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflamm Bowel Dis. 2010;16:1841–9.

    Article  PubMed  Google Scholar 

  14. Gaillard R, Santos S, Duijts L, Felix JF. Childhood health consequences of maternal obesity during pregnancy: a narrative review. Ann Nutr Metab. 2016;69:171–80.

    Article  CAS  PubMed  Google Scholar 

  15. Kimura I, Miyamoto J, Ohue-Kitano R, Watanabe K, Yamada T, Onuki M, et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science. 2020;367:eaaw8429.

    Article  CAS  PubMed  Google Scholar 

  16. Chen CC, Louie S, McCormick BA, Walker WA, Shi HN. Helminth-primed dendritic cells alter the host response to enteric bacterial infection. J Immunol. 2006;176:472–83.

    Article  CAS  PubMed  Google Scholar 

  17. Chen CY, Abell AM, Moon YS, Kim KH. An advanced glycation end product (AGE)-receptor for AGEs (RAGE) axis restores adipogenic potential of senescent preadipocytes through modulation of p53 protein function. J Biol Chem. 2012;287:44498–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Patterson E, O’Doherty RM, Murphy EF, Wall R, O’Sullivan O, Nilaweera K, et al. Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. Br J Nutr. 2014;111:1905–17.

    Article  CAS  PubMed  Google Scholar 

  19. Gao M, Ma Y, Liu D. High-fat diet-induced adiposity, adipose inflammation, hepatic steatosis and hyperinsulinemia in outbred CD-1 mice. PLoS ONE. 2015;10:e0119784.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shimizu I, Aprahamian T, Kikuchi R, Shimizu A, Papanicolaou KN, MacLauchlan S, et al. Vascular rarefaction mediates whitening of brown fat in obesity. J Clin Investig. 2014;124:2099–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shimizu I, Walsh K. The whitening of brown fat and its implications for weight management in obesity. Curr Obes Rep. 2015;4:224–9.

    Article  PubMed  Google Scholar 

  22. Byrne CS, Chambers ES, Morrison DJ, Frost G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int J Obes. 2015;39:1331–8.

    Article  CAS  Google Scholar 

  23. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11:577–91.

    Article  CAS  PubMed  Google Scholar 

  24. Hong YH, Nishimura Y, Hishikawa D, Tsuzuki H, Miyahara H, Gotoh C, et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology. 2005;146:5092–9.

    Article  CAS  PubMed  Google Scholar 

  25. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7:2839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Su CW, Chen CY, Jiao L, Long SR, Mao T, et al. Helminth-Induced and Th2-Dependent Alterations of the Gut Microbiota Attenuate Obesity Caused by High-Fat Diet. Cell Mol Gastroenterol Hepatol. 2020;10:763–78.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Trust for America’s Health and Robert Wood Johnson Foundation. The state of obesity 2018: better policies for a healthier America. https://www.tfah.org/report-details/the-state-of-obesity-2018/. Accessed December 2019.

  28. Chang E, Hafner H, Varghese M, Griffin C, Clemente J, Islam M, et al. Programming effects of maternal and gestational obesity on offspring metabolism and metabolic inflammation. Sci Rep. 2019;9:16027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ellsworth L, Harman E, Padmanabhan V, Gregg B. Lactational programming of glucose homeostasis: a window of opportunity. Reproduction. 2018;156:R23–r42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The human microbiome and child growth – first 1000 days and beyond. Trends Microbiol. 2019;27:131–47.

    Article  CAS  PubMed  Google Scholar 

  31. Rook GA, Raison CL, Lowry CA. Microbial ‘old friends’, immunoregulation and socioeconomic status. Clin Exp Immunol. 2014;177:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. White RA, Bjørnholt JV, Baird DD, Midtvedt T, Harris JR, Pagano M, et al. Novel developmental analyses identify longitudinal patterns of early gut microbiota that affect infant growth. PLoS Comput Biol. 2013;9:e1003042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roy CC, Kien CL, Bouthillier L, Levy E. Short-chain fatty acids: ready for prime time?. Nutr Clin Pract. 2006;21:351–66.

    Article  PubMed  Google Scholar 

  34. Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4:1829.

    Article  PubMed  Google Scholar 

  35. Winn NC, Vieira-Potter VJ, Gastecki ML, Welly RJ, Scroggins RJ, Zidon TM, et al. Loss of UCP1 exacerbates Western diet-induced glycemic dysregulation independent of changes in body weight in female mice. Am J Physiol Regul Integr Comp Physiol. 2017;312:R74–84.

    Article  PubMed  Google Scholar 

  36. Liang X, Yang Q, Zhang L, Maricelli JW, Rodgers BD, Zhu M-J, et al. Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice. Sci Rep. 2016;6:34345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kozak LP, Anunciado-Koza R. UCP1: its involvement and utility in obesity. Int J Obes. 2008;32:S32–8.

    Article  CAS  Google Scholar 

  38. Korsmo HW, Edwards K, Dave B, Jack-Roberts C, Yu H, Saxena A, et al. Prenatal choline supplementation during high-fat feeding improves long-term blood glucose control in male mouse offspring. Nutrients. 2020;12:144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health-R21 AI121997 (to HNS) and R21 AI144738-01A1 (to CS) and by the Nutrition Obesity Research Center at Harvard (P30 DK040561). CS was supported by a Pilot Feasibility Grant from the Nutrition Obesity Research Center at Harvard (P30 DK040561). LJ and TM were sponsored by the China Scholarship Council. The funders had no role in the study design, collection, analysis, or interpretation of data.

Author information

Authors and Affiliations

Authors

Contributions

CS, CC, TM, NC, NS, LJ, and JL performed the experimental work and analyzed the data. CS and HNS designed the experiments, analyzed the results and wrote the paper; AF and WAW participated in editing and provided conceptual advice.

Corresponding authors

Correspondence to Chien-Wen Su or Hai Ning Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, CW., Chen, CY., Mao, T. et al. Maternal helminth infection protects offspring from high-fat-diet-induced obesity through altered microbiota and SCFAs. Cell Mol Immunol 20, 389–403 (2023). https://doi.org/10.1038/s41423-023-00979-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-023-00979-1

Keywords

Search

Quick links