Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Type I interferon signaling facilitates resolution of acute liver injury by priming macrophage polarization

Abstract

Due to their broad functional plasticity, myeloid cells contribute to both liver injury and recovery during acetaminophen overdose-induced acute liver injury (APAP-ALI). A comprehensive understanding of cellular diversity and intercellular crosstalk is essential to elucidate the mechanisms and to develop therapeutic strategies for APAP-ALI treatment. Here, we identified the function of IFN-I in the myeloid compartment during APAP-ALI. Utilizing single-cell RNA sequencing, we characterized the cellular atlas and dynamic progression of liver CD11b+ cells post APAP-ALI in WT and STAT2 T403A mice, which was further validated by immunofluorescence staining, bulk RNA-seq, and functional experiments in vitro and in vivo. We identified IFN-I-dependent transcriptional programs in a three-way communication pathway that involved IFN-I synthesis in intermediate restorative macrophages, leading to CSF-1 production in aging neutrophils that ultimately enabled Trem2+ restorative macrophage maturation, contributing to efficient liver repair. Overall, we uncovered the heterogeneity of hepatic myeloid cells in APAP-ALI at single-cell resolution and the therapeutic potential of IFN-I in the treatment of APAP-ALI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Horvatits T, Drolz A, Trauner M, Fuhrmann V. Liver injury and failure in critical illness. Hepatology. 2019;70:2204–15. https://doi.org/10.1002/hep.30824.

    Article  Google Scholar 

  2. McGill MR, Sharpe MR, Williams CD, Taha M, Curry SC, Jaeschke H. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J Clin Invest. 2012;122:1574–83. https://doi.org/10.1172/JCI59755.

    Article  CAS  Google Scholar 

  3. Prescott LF, Illingworth RN, Critchley JA, Stewart MJ, Adam RD, Proudfoot AT. Intravenous N-acetylcystine: the treatment of choice for paracetamol poisoning. Br Med J. 1979;2:1097–100. https://doi.org/10.1136/bmj.2.6198.1097.

    Article  CAS  Google Scholar 

  4. Chopyk DM, Grakoui A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders. Gastroenterology. 2020;159:849–63. https://doi.org/10.1053/j.gastro.2020.04.077.

    Article  CAS  Google Scholar 

  5. Benard A, Sakwa I, Schierloh P, Colom A, Mercier I, Tailleux L, et al. B cells producing type I IFN modulate macrophage polarization in tuberculosis. Am J Respir Crit Care Med. 2018;197:801–13. https://doi.org/10.1164/rccm.201707-1475OC.

    Article  CAS  Google Scholar 

  6. Kumaran Satyanarayanan S, El Kebir D, Soboh S, Butenko S, Sekheri M, Saadi J, et al. IFN-beta is a macrophage-derived effector cytokine facilitating the resolution of bacterial inflammation. Nat Commun. 2019;10:3471. https://doi.org/10.1038/s41467-019-10903-9.

    Article  Google Scholar 

  7. Kubes P, Mehal WZ. Sterile inflammation in the liver. Gastroenterology. 2012;143:1158–72. https://doi.org/10.1053/j.gastro.2012.09.008.

    Article  CAS  Google Scholar 

  8. Vannella KM, Wynn TA. Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol. 2017;79:593–617. https://doi.org/10.1146/annurev-physiol-022516-034356.

    Article  CAS  Google Scholar 

  9. Yang W, Tao Y, Wu Y, Zhao X, Ye W, Zhao D, et al. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat Commun. 2019;10:1076. https://doi.org/10.1038/s41467-019-09046-8.

    Article  Google Scholar 

  10. Perugorria MJ, Esparza-Baquer A, Oakley F, Labiano I, Korosec A, Jais A, et al. Non-parenchymal TREM-2 protects the liver from immune-mediated hepatocellular damage. Gut. 2019;68:533–46. https://doi.org/10.1136/gutjnl-2017-314107.

    Article  CAS  Google Scholar 

  11. Triantafyllou E, Pop OT, Possamai LA, Wilhelm A, Liaskou E, Singanayagam A, et al. MerTK expressing hepatic macrophages promote the resolution of inflammation in acute liver failure. Gut. 2018;67:333–47. https://doi.org/10.1136/gutjnl-2016-313615.

    Article  CAS  Google Scholar 

  12. Wang Y, Song Q, Huang W, Lin Y, Wang X, Wang C, et al. A virus-induced conformational switch of STAT1-STAT2 dimers boosts antiviral defenses. Cell Res. 2021;31:206–18. https://doi.org/10.1038/s41422-020-0386-6.

    Article  CAS  Google Scholar 

  13. Sierro F, Evrard M, Rizzetto S, Melino M, Mitchell AJ, Florido M, et al. A Liver Capsular Network of monocyte-derived macrophages restricts hepatic dissemination of intraperitoneal bacteria by neutrophil recruitment. Immunity. 2017;47:374–88.e6. https://doi.org/10.1016/j.immuni.2017.07.018.

    Article  CAS  Google Scholar 

  14. Woolbright BL, Jaeschke H. Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure. J Hepatol. 2017;66:836–48. https://doi.org/10.1016/j.jhep.2016.11.017.

    Article  CAS  Google Scholar 

  15. Hassani M, Hellebrekers P, Chen N, van Aalst C, Bongers S, Hietbrink F, et al. On the origin of low-density neutrophils. J Leukoc Biol. 2020;107:809–18. https://doi.org/10.1002/JLB.5HR0120-459R.

    Article  CAS  Google Scholar 

  16. Zhang D, Chen G, Manwani D, Mortha A, Xu C, Faith JJ, et al. Neutrophil ageing is regulated by the microbiome. Nature. 2015;525:528–32. https://doi.org/10.1038/nature15367.

    Article  CAS  Google Scholar 

  17. Xie X, Shi Q, Wu P, Zhang X, Kambara H, Su J, et al. Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection. Nat Immunol. 2020;21:1119–33. https://doi.org/10.1038/s41590-020-0736-z.

    Article  CAS  Google Scholar 

  18. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–6. https://doi.org/10.1038/nbt.2859.

    Article  CAS  Google Scholar 

  19. Zigmond E, Samia-Grinberg S, Pasmanik-Chor M, Brazowski E, Shibolet O, Halpern Z, et al. Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury. J Immunol. 2014;193:344–53. https://doi.org/10.4049/jimmunol.1400574.

    Article  CAS  Google Scholar 

  20. Pervolaraki K, Rastgou Talemi S, Albrecht D, Bormann F, Bamford C, Mendoza JL, et al. Differential induction of interferon stimulated genes between type I and type III interferons is independent of interferon receptor abundance. PLoS Pathog. 2018;14:e1007420. https://doi.org/10.1371/journal.ppat.1007420.

    Article  Google Scholar 

  21. Wang Y, Nan J, Willard B, Wang X, Yang J, Stark GR. Negative regulation of type I IFN signaling by phosphorylation of STAT2 on T387. EMBO J. 2017;36:202–12. https://doi.org/10.15252/embj.201694834.

    Article  CAS  Google Scholar 

  22. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92. https://doi.org/10.1109/tvcg.2014.2346248.

    Article  Google Scholar 

  23. Hamilton TA, Zhao C, Pavicic PG Jr., Datta S. Myeloid colony-stimulating factors as regulators of macrophage polarization. Front Immunol. 2014;5:554. https://doi.org/10.3389/fimmu.2014.00554.

    Article  Google Scholar 

  24. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun. 2021;12:1088. https://doi.org/10.1038/s41467-021-21246-9.

    Article  CAS  Google Scholar 

  25. Scutera S, Fraone T, Musso T, Cappello P, Rossi S, Pierobon D, et al. Survival and migration of human dendritic cells are regulated by an IFN-alpha-inducible Axl/Gas6 pathway. J Immunol. 2009;183:3004–13. https://doi.org/10.4049/jimmunol.0804384.

    Article  CAS  Google Scholar 

  26. Braza MS, Conde P, Garcia M, Cortegano I, Brahmachary M, Pothula V, et al. Neutrophil derived CSF1 induces macrophage polarization and promotes transplantation tolerance. Am J Transplant. 2018;18:1247–55. https://doi.org/10.1111/ajt.14645.

    Article  CAS  Google Scholar 

  27. Mufarrege EF, Haile LA, Etcheverrigaray M, Verthelyi DI. Multiplexed gene expression as a characterization of bioactivity for interferon beta (IFN-beta) biosimilar candidates: Impact of Innate Immune Response Modulating Impurities (IIRMIs). AAPS J. 2019;21:26. https://doi.org/10.1208/s12248-019-0300-7.

    Article  Google Scholar 

  28. Stutchfield BM, Antoine DJ, Mackinnon AC, Gow DJ, Bain CC, Hawley CA, et al. CSF1 restores innate immunity after liver injury in mice and serum levels indicate outcomes of patients with acute liver failure. Gastroenterology. 2015;149:1896–909.e14. https://doi.org/10.1053/j.gastro.2015.08.053.

    Article  CAS  Google Scholar 

  29. Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol. 2016;100:481–9. https://doi.org/10.1189/jlb.3RU0316-144R.

    Article  CAS  Google Scholar 

  30. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al. SCENIC: single-cell regulatory network inference and clustering. Nat Methods. 2017;14:1083–6. https://doi.org/10.1038/nmeth.4463.

    Article  CAS  Google Scholar 

  31. Lazear HM, Lancaster A, Wilkins C, Suthar MS, Huang A, Vick SC, et al. IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling. PLoS Pathog. 2013;9:e1003118. https://doi.org/10.1371/journal.ppat.1003118.

    Article  CAS  Google Scholar 

  32. Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol. 2021;18:45–56. https://doi.org/10.1038/s41423-020-00558-8.

    Article  CAS  Google Scholar 

  33. Mossanen JC, Krenkel O, Ergen C, Govaere O, Liepelt A, Puengel T, et al. Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology. 2016;64:1667–82. https://doi.org/10.1002/hep.28682.

    Article  CAS  Google Scholar 

  34. Kolodziejczyk AA, Federici S, Zmora N, Mohapatra G, Dori-Bachash M, Hornstein S, et al. Acute liver failure is regulated by MYC- and microbiome-dependent programs. Nat Med. 2020;26:1899–911. https://doi.org/10.1038/s41591-020-1102-2.

    Article  CAS  Google Scholar 

  35. Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, Luu NT, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature. 2019;575:512–8. https://doi.org/10.1038/s41586-019-1631-3.

    Article  CAS  Google Scholar 

  36. Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, et al. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell. 2019;179:829–45.e20. https://doi.org/10.1016/j.cell.2019.10.003.

    Article  CAS  Google Scholar 

  37. Ng CT, Mendoza JL, Garcia KC, Oldstone MB. Alpha and beta type 1 interferon signaling: passage for diverse biologic outcomes. Cell. 2016;164:349–52. https://doi.org/10.1016/j.cell.2015.12.027.

    Article  CAS  Google Scholar 

  38. Jaitin DA, Roisman LC, Jaks E, Gavutis M, Piehler J, Van der Heyden J, et al. Inquiring into the differential action of interferons (IFNs): an IFN-alpha2 mutant with enhanced affinity to IFNAR1 is functionally similar to IFN-beta. Mol Cell Biol. 2006;26:1888–97. https://doi.org/10.1128/mcb.26.5.1888-1897.2006.

    Article  CAS  Google Scholar 

  39. Saraiva M, O’Garra A. The regulation of IL-10 production by immune cells. Nat Rev Immunol. 2010;10:170–81. https://doi.org/10.1038/nri2711.

    Article  CAS  Google Scholar 

  40. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8:239–45. https://doi.org/10.1038/ni1443.

    Article  CAS  Google Scholar 

  41. Ng CT, Nayak BP, Schmedt C, Oldstone MB. Immortalized clones of fibroblastic reticular cells activate virus-specific T cells during virus infection. Proc Natl Acad Sci USA. 2012;109:7823–8. https://doi.org/10.1073/pnas.1205850109.

    Article  CAS  Google Scholar 

  42. Butenko S, Satyanarayanan SK, Assi S, Schif-Zuck S, Sher N, Ariel A. Transcriptomic analysis of monocyte-derived non-phagocytic macrophages favors a role in limiting tissue repair and fibrosis. Front Immunol. 2020;11:405. https://doi.org/10.3389/fimmu.2020.00405.

    Article  CAS  Google Scholar 

  43. Butenko S, Ben Jashar N, Sheffer T, Sabo E, Schif-Zuck S, Ariel A. ACKR2 limits skin fibrosis and hair loss through IFN-β. FASEB J. 2021;35:e21917. https://doi.org/10.1096/fj.202002395RR.

    Article  CAS  Google Scholar 

  44. Marwick JA, Mills R, Kay O, Michail K, Stephen J, Rossi AG, et al. Neutrophils induce macrophage anti-inflammatory reprogramming by suppressing NF-kappaB activation. Cell Death Dis. 2018;9:665. https://doi.org/10.1038/s41419-018-0710-y.

    Article  Google Scholar 

  45. Aswad M, Assi S, Schif-Zuck S, Ariel A. CCL5 promotes resolution-phase macrophage reprogramming in concert with the atypical chemokine receptor D6 and apoptotic polymorphonuclear cells. J Immunol. 2017;199:1393–404. https://doi.org/10.4049/jimmunol.1502542.

    Article  CAS  Google Scholar 

  46. Williams JC, Craven RR, Earp HS, Kawula TH, Matsushima GK. TAM receptors are dispensable in the phagocytosis and killing of bacteria. Cell Immunol. 2009;259:128–34. https://doi.org/10.1016/j.cellimm.2009.06.006.

    Article  CAS  Google Scholar 

  47. Lumbroso D, Soboh S, Maimon A, Schif-Zuck S, Ariel A, Burstyn-Cohen T. Macrophage-derived protein S facilitates apoptotic polymorphonuclear cell clearance by resolution phase macrophages and supports their reprogramming. Front Immunol. 2018;9:358. https://doi.org/10.3389/fimmu.2018.00358.

    Article  Google Scholar 

  48. Moore RN, Pitruzzello FJ, Robinson RM, Rouse BT. Interferon produced endogenously in response to CSF-1 augments the functional differentiation of progeny macrophages. J Leukoc Biol. 1985;37:659–64. https://doi.org/10.1002/jlb.37.5.659.

    Article  CAS  Google Scholar 

  49. Fleetwood AJ, Dinh H, Cook AD, Hertzog PJ, Hamilton JA. GM-CSF- and M-CSF-dependent macrophage phenotypes display differential dependence on type I interferon signaling. J Leukoc Biol. 2009;86:411–21. https://doi.org/10.1189/jlb.1108702.

    Article  CAS  Google Scholar 

  50. Siren J, Pirhonen J, Julkunen I, Matikainen S. IFN-alpha regulates TLR-dependent gene expression of IFN-alpha, IFN-beta, IL-28, and IL-29. J Immunol. 2005;174:1932–7. https://doi.org/10.4049/jimmunol.174.4.1932.

    Article  CAS  Google Scholar 

  51. Honda K, Takaoka A, Taniguchi T. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity. 2006;25:349–60. https://doi.org/10.1016/j.immuni.2006.08.009.

    Article  CAS  Google Scholar 

  52. Nan J, Wang Y, Yang J, Stark GR. IRF9 and unphosphorylated STAT2 cooperate with NF-kappaB to drive IL6 expression. Proc Natl Acad Sci USA. 2018;115:3906–11. https://doi.org/10.1073/pnas.1714102115.

    Article  CAS  Google Scholar 

  53. Zhang L, Pavicic PG Jr., Datta S, Song Q, Xu X, Wei W, et al. Unfolded protein response differentially regulates TLR4-induced cytokine expression in distinct macrophage populations. Front Immunol. 2019;10:1390. https://doi.org/10.3389/fimmu.2019.01390.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Key R&D Program of Shandong Province (2020CXGC010503), Shandong Provincial Key Laboratory Platform Project (2021ZDSYS11), and Major Program of National Natural Science Foundation of China (81991525).

Author information

Authors and Affiliations

Authors

Contributions

TH, CZ and JY directed all aspects of the project. QS, SD, XX, PP, YZhao, SL, ZZ, PH, PJ, YQ, WL, JZ, YX, JX, ZW, LW, MZ and YZhang performed the experiments. XL, QS and CY analyzed the seq data with significant contributions from XL in data visualization. XZ and CL discussed the clinical features of liver injury and reviewed the pathology sections. QS, CZ, JY and TH wrote the manuscript. YW, GS, YL and GRS read the manuscript and provided useful comments.

Corresponding authors

Correspondence to Chenyang Zhao, Thomas Hamilton or Jinbo Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Q., Datta, S., Liang, X. et al. Type I interferon signaling facilitates resolution of acute liver injury by priming macrophage polarization. Cell Mol Immunol 20, 143–157 (2023). https://doi.org/10.1038/s41423-022-00966-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-022-00966-y

Keywords

This article is cited by

Search

Quick links