Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RANKL-responsive epigenetic mechanism reprograms macrophages into bone-resorbing osteoclasts

Abstract

Monocyte/macrophage lineage cells are highly plastic and can differentiate into various cells under different environmental stimuli. Bone-resorbing osteoclasts are derived from the monocyte/macrophage lineage in response to receptor activator of NF-κB ligand (RANKL). However, the epigenetic signature contributing to the fate commitment of monocyte/macrophage lineage differentiation into human osteoclasts is largely unknown. In this study, we identified RANKL-responsive human osteoclast-specific superenhancers (SEs) and SE-associated enhancer RNAs (SE-eRNAs) by integrating data obtained from ChIP-seq, ATAC-seq, nuclear RNA-seq and PRO-seq analyses. RANKL induced the formation of 200 SEs, which are large clusters of enhancers, while suppressing 148 SEs in macrophages. RANKL-responsive SEs were strongly correlated with genes in the osteoclastogenic program and were selectively increased in human osteoclasts but marginally presented in osteoblasts, CD4+ T cells, and CD34+ cells. In addition to the major transcription factors identified in osteoclasts, we found that BATF binding motifs were highly enriched in RANKL-responsive SEs. The depletion of BATF1/3 inhibited RANKL-induced osteoclast differentiation. Furthermore, we found increased chromatin accessibility in SE regions, where RNA polymerase II was significantly recruited to induce the extragenic transcription of SE-eRNAs, in human osteoclasts. Knocking down SE-eRNAs in the vicinity of the NFATc1 gene diminished the expression of NFATc1, a major regulator of osteoclasts, and osteoclast differentiation. Inhibiting BET proteins suppressed the formation of some RANKL-responsive SEs and NFATc1-associated SEs, and the expression of SE-eRNA:NFATc1. Moreover, SE-eRNA:NFATc1 was highly expressed in the synovial macrophages of rheumatoid arthritis patients exhibiting high-osteoclastogenic potential. Our genome-wide analysis revealed RANKL-inducible SEs and SE-eRNAs as osteoclast-specific signatures, which may contribute to the development of osteoclast-specific therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol. 2019;19:626–42. https://doi.org/10.1038/s41577-019-0178-8.

    Article  CAS  Google Scholar 

  2. Park-Min KH. Mechanisms involved in normal and pathological osteoclastogenesis. Cell Mol life Sci: CMLS. 2018;75:2519–28. https://doi.org/10.1007/s00018-018-2817-9.

    Article  CAS  Google Scholar 

  3. Novack DV, Teitelbaum SL. The osteoclast: friend or foe? Annu Rev Pathol. 2008;3:457–84. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151431.

    Article  CAS  Google Scholar 

  4. Goldring SR. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatol (Oxf). 2003;42(Suppl 2):ii11–16. https://doi.org/10.1093/rheumatology/keg327.

    Article  CAS  Google Scholar 

  5. Sato K, Takayanagi H. Osteoclasts, rheumatoid arthritis, and osteoimmunology. Curr Opin Rheumatol. 2006;18:419–26. https://doi.org/10.1097/01.bor.0000231912.24740.a5.

    Article  CAS  Google Scholar 

  6. Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol. 2012;8:656–64. https://doi.org/10.1038/nrrheum.2012.153.

    Article  CAS  Google Scholar 

  7. Yasui T, Hirose J, Tsutsumi S, Nakamura K, Aburatani H, Tanaka S. Epigenetic regulation of osteoclast differentiation: possible involvement of Jmjd3 in the histone demethylation of Nfatc1. J Bone Min Res. 2011;26:2665–71.

    Article  CAS  Google Scholar 

  8. Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med. 2005;202:1261–9.

    Article  CAS  Google Scholar 

  9. Yasui T, Hirose J, Aburatani H, Tanaka S. Epigenetic regulation of osteoclast differentiation. Ann N. Y Acad Sci. 2011;1240:7–13.

    Article  CAS  Google Scholar 

  10. Carey HA, Hildreth BE, Samuvel DJ, Thies KA, Rosol TJ, Toribio RE, et al. Eomes partners with PU.1 and MITF to Regulate Transcription Factors Critical for osteoclast differentiation. iScience. 2019;11:238–45. https://doi.org/10.1016/j.isci.2018.12.018.

    Article  CAS  Google Scholar 

  11. Park-Min KH. Epigenetic regulation of bone cells. Connect Tissue Res. 2017;58:76–89. https://doi.org/10.1080/03008207.2016.1177037.

    Article  CAS  Google Scholar 

  12. Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA. 2000;97:1566–71.

    Article  CAS  Google Scholar 

  13. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397:315–23. https://doi.org/10.1038/16852.

    Article  CAS  Google Scholar 

  14. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13:2412–24. https://doi.org/10.1101/gad.13.18.2412.

    Article  CAS  Google Scholar 

  15. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Developmental cell. 2002;3:889–901.

    Article  CAS  Google Scholar 

  16. Winslow MM, Pan M, Starbuck M, Gallo EM, Deng L, Karsenty G, et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Developmental cell. 2006;10:771–82. https://doi.org/10.1016/j.devcel.2006.04.006.

    Article  CAS  Google Scholar 

  17. Aliprantis AO, Ueki Y, Sulyanto R, Park A, Sigrist KS, Sharma SM, et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest. 2008;118:3775–89. https://doi.org/10.1172/JCI35711.

    Article  CAS  Google Scholar 

  18. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Disco. 2012;11:384–400. https://doi.org/10.1038/nrd3674.

    Article  CAS  Google Scholar 

  19. Berdasco M, Esteller M. Clinical epigenetics: seizing opportunities for translation. Nat Rev Genet. 2019;20:109–27. https://doi.org/10.1038/s41576-018-0074-2.

    Article  CAS  Google Scholar 

  20. Nishikawa K, Iwamoto Y, Kobayashi Y, Katsuoka F, Kawaguchi S, Tsujita T, et al. DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nat Med. 2015;21:281–7. https://doi.org/10.1038/nm.3774.

    Article  CAS  Google Scholar 

  21. Park-Min KH, Lim E, Lee MJ, Park SH, Giannopoulou E, Yarilina A, et al. Inhibition of osteoclastogenesis and inflammatory bone resorption by targeting BET proteins and epigenetic regulation. Nat Commun. 2014;5:5418. https://doi.org/10.1038/ncomms6418.

    Article  CAS  Google Scholar 

  22. Meng S, Zhang L, Tang Y, Tu Q, Zheng L, Yu L, et al. BET Inhibitor JQ1 Blocks Inflammation and Bone Destruction. J Dent Res. 2014;93:657–62. https://doi.org/10.1177/0022034514534261.

    Article  CAS  Google Scholar 

  23. Williamson I, Hill RE, Bickmore WA. Enhancers: from developmental genetics to the genetics of common human disease. Dev Cell. 2011;21:17–19. https://doi.org/10.1016/j.devcel.2011.06.008.

    Article  CAS  Google Scholar 

  24. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153:307–19. https://doi.org/10.1016/j.cell.2013.03.035.

    Article  CAS  Google Scholar 

  25. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153:320–34. https://doi.org/10.1016/j.cell.2013.03.036.

    Article  CAS  Google Scholar 

  26. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155:934–47. https://doi.org/10.1016/j.cell.2013.09.053.

    Article  CAS  Google Scholar 

  27. Stower H. Gene expression: Super enhancers. Nat Rev Genet. 2013;14:367. https://doi.org/10.1038/nrg3496.

    Article  CAS  Google Scholar 

  28. Shin HY. Targeting Super-Enhancers for Disease Treatment and Diagnosis. Mol Cells. 2018;41:506–14. https://doi.org/10.14348/molcells.2018.2297.

    Article  CAS  Google Scholar 

  29. Arnold PR, Wells AD, Li XC. Diversity and Emerging Roles of Enhancer RNA in Regulation of Gene Expression and Cell Fate. Front Cell Dev Biol. 2019;7:377. https://doi.org/10.3389/fcell.2019.00377.

    Article  Google Scholar 

  30. Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol. 2013;20:259–66. https://doi.org/10.1038/nsmb.2470.

    Article  CAS  Google Scholar 

  31. Adam RC, Yang H, Rockowitz S, Larsen SB, Nikolova M, Oristian DS, et al. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature. 2015;521:366–70. https://doi.org/10.1038/nature14289.

    Article  CAS  Google Scholar 

  32. Carey HA, Hildreth BE, Geisler JA, Nickel MC, Cabrera J, Ghosh S, et al. Enhancer variants reveal a conserved transcription factor network governed by PU.1 during osteoclast differentiation. Bone Res. 2018;6:8. https://doi.org/10.1038/s41413-018-0011-1.

    Article  CAS  Google Scholar 

  33. Ko JY, Oh S, Yoo KH. Functional Enhancers As Master Regulators of Tissue-Specific Gene Regulation and Cancer Development. Mol Cells. 2017;40:169–77. https://doi.org/10.14348/molcells.2017.0033.

    Article  CAS  Google Scholar 

  34. Pefanis E, Wang J, Rothschild G, Lim J, Kazadi D, Sun J, et al. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell. 2015;161:774–89. https://doi.org/10.1016/j.cell.2015.04.034.

    Article  CAS  Google Scholar 

  35. Chang HC, Huang HC, Juan HF, Hsu CL. Investigating the role of super-enhancer RNAs underlying embryonic stem cell differentiation. BMC Genomics. 2019;20:896. https://doi.org/10.1186/s12864-019-6293-x.

    Article  CAS  Google Scholar 

  36. Liang J, Zhou H, Gerdt C, Tan M, Colson T, Kaye KM, et al. Epstein-Barr virus super-enhancer eRNAs are essential for MYC oncogene expression and lymphoblast proliferation. Proc Natl Acad Sci USA. 2016;113:14121–6. https://doi.org/10.1073/pnas.1616697113.

    Article  CAS  Google Scholar 

  37. Alvarez-Dominguez JR, Knoll M, Gromatzky AA, Lodish HF. The Super-Enhancer-Derived alncRNA-EC7/Bloodlinc Potentiates Red Blood Cell Development in trans. Cell Rep. 2017;19:2503–14. https://doi.org/10.1016/j.celrep.2017.05.082.

    Article  CAS  Google Scholar 

  38. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465:182–7. https://doi.org/10.1038/nature09033.

    Article  CAS  Google Scholar 

  39. Kim, YW, Lee, S, Yun, J & Kim, A Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the beta-globin locus. Biosci Rep. 2015;35. https://doi.org/10.1042/BSR20140126.

  40. Benner C, Isoda T, Murre C. New roles for DNA cytosine modification, eRNA, anchors, and superanchors in developing B cell progenitors. Proc Natl Acad Sci USA. 2015;112:12776–81. https://doi.org/10.1073/pnas.1512995112.

    Article  CAS  Google Scholar 

  41. Kaikkonen MU, Spann NJ, Heinz S, Romanoski CE, Allison KA, Stender JD, et al. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol Cell. 2013;51:310–25. https://doi.org/10.1016/j.molcel.2013.07.010.

    Article  CAS  Google Scholar 

  42. Meng FL, Du Z, Federation A, Hu J, Wang Q, Kieffer-Kwon KR, et al. Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability. Cell. 2014;159:1538–48. https://doi.org/10.1016/j.cell.2014.11.014.

    Article  CAS  Google Scholar 

  43. Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature. 2013;494:497–501. https://doi.org/10.1038/nature11884.

    Article  CAS  Google Scholar 

  44. Arner E, Daub CO, Vitting-Seerup K, Andersson R, Lilje B, Drabløs F, et al. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science. 2015;347:1010–4. https://doi.org/10.1126/science.1259418.

    Article  CAS  Google Scholar 

  45. Imamura K, et al. Diminished nuclear RNA decay upon Salmonella infection upregulates antibacterial noncoding RNAs. EMBO J. 2018;37. https://doi.org/10.15252/embj.201797723.

  46. Dorighi KM, Swigut T, Henriques T, Bhanu NV, Scruggs BS, Nady N, et al. Mll3 and Mll4 Facilitate Enhancer RNA Synthesis and Transcription from Promoters Independently of H3K4 Monomethylation. Mol Cell. 2017;66:568–76 e564. https://doi.org/10.1016/j.molcel.2017.04.018.

    Article  CAS  Google Scholar 

  47. Cheng JH, Pan DZ, Tsai ZT, Tsai HK. Genome-wide analysis of enhancer RNA in gene regulation across 12 mouse tissues. Sci Rep. 2015;5:12648. https://doi.org/10.1038/srep12648.

    Article  CAS  Google Scholar 

  48. Ren C, Liu F, Ouyang Z, An G, Zhao C, Shuai J, et al. Functional annotation of structural ncRNAs within enhancer RNAs in the human genome: implications for human disease. Sci Rep. 2017;7:15518. https://doi.org/10.1038/s41598-017-15822-7.

    Article  CAS  Google Scholar 

  49. Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature. 2013;498:516–20. https://doi.org/10.1038/nature12210.

    Article  CAS  Google Scholar 

  50. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507:455–61. https://doi.org/10.1038/nature12787.

    Article  CAS  Google Scholar 

  51. Gordon RA, Grigoriev G, Lee A, Kalliolias GD, Ivashkiv LB. The interferon signature and STAT1 expression in rheumatoid arthritis synovial fluid macrophages are induced by tumor necrosis factor alpha and counter-regulated by the synovial fluid microenvironment. Arthritis rheumatism. 2012;64:3119–28. https://doi.org/10.1002/art.34544.

    Article  CAS  Google Scholar 

  52. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis rheumatism. 1988;31:315–24.

    Article  CAS  Google Scholar 

  53. Park-Min KH, Serbina NV, Yang W, Ma X, Krystal G, Neel BG, et al. FcgammaRIII-dependent inhibition of interferon-gamma responses mediates suppressive effects of intravenous immune globulin. Immunity. 2007;26:67–78. https://doi.org/10.1016/j.immuni.2006.11.010.

    Article  CAS  Google Scholar 

  54. Bae S, Lee MJ, Mun SH, Giannopoulou EG, Yong-Gonzalez V, Cross JR, et al. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRalpha. J Clin Invest. 2017;127:2555–68. https://doi.org/10.1172/JCI89935.

    Article  Google Scholar 

  55. Miyauchi Y, Ninomiya K, Miyamoto H, Sakamoto A, Iwasaki R, Hoshi H, et al. The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis. J Exp Med. 2010;207:751–62. https://doi.org/10.1084/jem.20091957.

    Article  CAS  Google Scholar 

  56. Zhu L, et al. Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Sci Transl Med. 2020;12. https://doi.org/10.1126/scitranslmed.aaw6143.

  57. Zhao B, Takami M, Yamada A, Wang X, Koga T, Hu X, et al. Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat Med. 2009;15:1066–71. https://doi.org/10.1038/nm.2007.

    Article  CAS  Google Scholar 

  58. Kim I, Kim JH, Kim K, Seong S, Kim N. The IRF2BP2-KLF2 axis regulates osteoclast and osteoblast differentiation. BMB Rep. 2019;52:469–74.

    Article  CAS  Google Scholar 

  59. Sun L, Lian JX, Meng S. MiR-125a-5p promotes osteoclastogenesis by targeting TNFRSF1B. Cell Mol Biol Lett. 2019;24:23. https://doi.org/10.1186/s11658-019-0146-0.

    Article  CAS  Google Scholar 

  60. Wagner EF, Eferl R. Fos/AP-1 proteins in bone and the immune system. Immunol Rev. 2005;208:126–40. https://doi.org/10.1111/j.0105-2896.2005.00332.x.

    Article  CAS  Google Scholar 

  61. Dorsey MJ, Tae HJ, Sollenberger KG, Mascarenhas NT, Johansen LM, Taparowsky EJ. B-ATF: a novel human bZIP protein that associates with members of the AP-1 transcription factor family. Oncogene. 1995;11:2255–65.

    CAS  Google Scholar 

  62. Echlin DR, Tae HJ, Mitin N, Taparowsky EJ. B-ATF functions as a negative regulator of AP-1 mediated transcription and blocks cellular transformation by Ras and Fos. Oncogene. 2000;19:1752–63. https://doi.org/10.1038/sj.onc.1203491.

    Article  CAS  Google Scholar 

  63. Tussiwand R, Lee WL, Murphy TL, Mashayekhi M, KC W, Albring JC, et al. Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature. 2012;490:502–7. https://doi.org/10.1038/nature11531.

    Article  CAS  Google Scholar 

  64. Xiao S, Huang Q, Ren H, Yang M. The mechanism and function of super enhancer RNA. Genesis. 2021;59:e23422. https://doi.org/10.1002/dvg.23422.

    Article  CAS  Google Scholar 

  65. De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S, Tusi BK, et al. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 2010;8:e1000384. https://doi.org/10.1371/journal.pbio.1000384.

    Article  CAS  Google Scholar 

  66. Dhaliwal NK, Mitchell JA. Nuclear RNA Isolation and Sequencing. Methods Mol Biol. 2016;1402:63–71. https://doi.org/10.1007/978-1-4939-3378-5_7.

    Article  CAS  Google Scholar 

  67. Kwak H, Fuda NJ, Core LJ, Lis JT. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science. 2013;339:950–3. https://doi.org/10.1126/science.1229386.

    Article  CAS  Google Scholar 

  68. Wang Z, Chu T, Choate LA, Danko CG. Identification of regulatory elements from nascent transcription using dREG. Genome Res. 2019;29:293–303. https://doi.org/10.1101/gr.238279.118.

    Article  CAS  Google Scholar 

  69. Yarilina A, Xu K, Chen J, Ivashkiv LB. TNF activates calcium-nuclear factor of activated T cells (NFAT)c1 signaling pathways in human macrophages. Proc Natl Acad Sci USA. 2011;108:1573–8. https://doi.org/10.1073/pnas.1010030108.

    Article  Google Scholar 

  70. Abdallah BM, Al-Shammary A, Skagen P, Abu Dawud R, Adjaye J, Aldahmash A, et al. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells. Stem Cell Res. 2015;15:449–58. https://doi.org/10.1016/j.scr.2015.09.005.

    Article  CAS  Google Scholar 

  71. Tjonnfjord GE, Veiby OP, Steen R, Egeland T. T lymphocyte differentiation in vitro from adult human prethymic CD34+ bone marrow cells. J Exp Med. 1993;177:1531–9. https://doi.org/10.1084/jem.177.6.1531.

    Article  CAS  Google Scholar 

  72. Matayoshi A, Brown C, DiPersio JF, Haug J, Abu-Amer Y, Liapis H, et al. Human blood-mobilized hematopoietic precursors differentiate into osteoclasts in the absence of stromal cells. Proc Natl Acad Sci USA. 1996;93:10785–90. https://doi.org/10.1073/pnas.93.20.10785.

    Article  CAS  Google Scholar 

  73. Peng Y, Kang H, Luo J, Zhang Y. A Comparative Analysis of Super-Enhancers and Broad H3K4me3 Domains in Pig, Human, and Mouse Tissues. Front Genet. 2021;12:701049. https://doi.org/10.3389/fgene.2021.701049.

    Article  CAS  Google Scholar 

  74. Ansari-Lari MA, Oeltjen JC, Schwartz S, Zhang Z, Muzny DM, Lu J, et al. Comparative sequence analysis of a gene-rich cluster at human chromosome 12p13 and its syntenic region in mouse chromosome 6. Genome Res. 1998;8:29–40.

    CAS  Google Scholar 

  75. Hardison RC, Oeltjen J, Miller W. Long human-mouse sequence alignments reveal novel regulatory elements: a reason to sequence the mouse genome. Genome Res. 1997;7:959–66. https://doi.org/10.1101/gr.7.10.959.

    Article  CAS  Google Scholar 

  76. Ungerback J, Hosokawa H, Wang X, Strid T, Williams BA, Sigvardsson M, et al. Pioneering, chromatin remodeling, and epigenetic constraint in early T-cell gene regulation by SPI1 (PU.1). Genome Res. 2018;28:1508–19. https://doi.org/10.1101/gr.231423.117.

    Article  CAS  Google Scholar 

  77. Natoli G, Ghisletti S, Barozzi I. The genomic landscapes of inflammation. Genes Dev. 2011;25:101–6. https://doi.org/10.1101/gad.2018811.

    Article  CAS  Google Scholar 

  78. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89. https://doi.org/10.1016/j.molcel.2010.05.004.

    Article  CAS  Google Scholar 

  79. Izawa N, Kurotaki D, Nomura S, Fujita T, Omata Y, Yasui T, et al. Cooperation of PU.1 With IRF8 and NFATc1 Defines Chromatin Landscapes During RANKL-Induced Osteoclastogenesis. J Bone Min Res. 2019;34:1143–54. https://doi.org/10.1002/jbmr.3689.

    Article  CAS  Google Scholar 

  80. Liang HC, Costanza M, Prutsch N, Zimmerman MW, Gurnhofer E, Montes-Mojarro IA, et al. Super-enhancer-based identification of a BATF3/IL-2R-module reveals vulnerabilities in anaplastic large cell lymphoma. Nat Commun. 2021;12:5577. https://doi.org/10.1038/s41467-021-25379-9.

    Article  CAS  Google Scholar 

  81. Zhang QG, Qian J, Zhu YC. Targeting bromodomain-containing protein 4 (BRD4) benefits rheumatoid arthritis. Immunol Lett. 2015;166:103–8. https://doi.org/10.1016/j.imlet.2015.05.016.

    Article  CAS  Google Scholar 

  82. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25:1915–27. https://doi.org/10.1101/gad.17446611.

    Article  CAS  Google Scholar 

  83. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–89. https://doi.org/10.1101/gr.132159.111.

    Article  CAS  Google Scholar 

  84. Liu W, Li Z, Cai Z, Xie Z, Li J, Li M, et al. LncRNA-mRNA expression profiles and functional networks in osteoclast differentiation. J Cell Mol Med. 2020;24:9786–9797. https://doi.org/10.1111/jcmm.15560.

    Article  CAS  Google Scholar 

  85. Silva AM, Moura SR, Teixeira JH, Barbosa MA, Santos SG, Almeida MI. Long noncoding RNAs: a missing link in osteoporosis. Bone Res. 2019;7:10. https://doi.org/10.1038/s41413-019-0048-9.

    Article  CAS  Google Scholar 

  86. Sakaguchi Y, Nishikawa K, Seno S, Matsuda H, Takayanagi H, Ishii M. Roles of Enhancer RNAs in RANKL-induced Osteoclast Differentiation Identified by Genome-wide Cap-analysis of Gene Expression using CRISPR/Cas9. Sci Rep. 2018;8:7504. https://doi.org/10.1038/s41598-018-25748-3.

    Article  CAS  Google Scholar 

  87. Kim JH, Kim N. Regulation of NFATc1 in Osteoclast Differentiation. J Bone Metab. 2014;21:233–41. https://doi.org/10.11005/jbm.2014.21.4.233.

    Article  Google Scholar 

  88. Wu Y, Zeng J, Roscoe BP, Liu P, Yao Q, Lazzarotto CR, et al. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med. 2019;25:776–83. https://doi.org/10.1038/s41591-019-0401-y.

    Article  CAS  Google Scholar 

  89. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154:442–51. https://doi.org/10.1016/j.cell.2013.06.044.

    Article  CAS  Google Scholar 

  90. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Prim. 2018;4:18001. https://doi.org/10.1038/nrdp.2018.1.

    Article  Google Scholar 

  91. van der Heijde DM. Joint erosions and patients with early rheumatoid arthritis. Br J Rheumatol. 1995;34(Suppl 2):74–78.

    Article  Google Scholar 

  92. Machold KP, Stamm TA, Nell VP, Pflugbeil S, Aletaha D, Steiner G, et al. Very recent onset rheumatoid arthritis: clinical and serological patient characteristics associated with radiographic progression over the first years of disease. Rheumatology. 2007;46:342–9. https://doi.org/10.1093/rheumatology/kel237.

    Article  CAS  Google Scholar 

  93. Ejbjerg B, Narvestad E, Rostrup E, Szkudlarek M, Jacobsen S, Thomsen HS, et al. Magnetic resonance imaging of wrist and finger joints in healthy subjects occasionally shows changes resembling erosions and synovitis as seen in rheumatoid arthritis. Arthritis rheumatism. 2004;50:1097–106. https://doi.org/10.1002/art.20135.

    Article  Google Scholar 

  94. Alippe Y, Mbalaviele G. Omnipresence of inflammasome activities in inflammatory bone diseases. Semin Immunopathol. 2019;41:607–18. https://doi.org/10.1007/s00281-019-00753-4.

    Article  CAS  Google Scholar 

  95. Gravallese EM, Harada Y, Wang JT, Gorn AH, Thornhill TS, Goldring SR. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol. 1998;152:943–51.

    CAS  Google Scholar 

  96. Pettit AR, Ji H, von Stechow D, Muller R, Goldring SR, Choi Y, et al. TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol. 2001;159:1689–99. https://doi.org/10.1016/S0002-9440(10)63016-7.

    Article  CAS  Google Scholar 

  97. Redlich K, Hayer S, Ricci R, David JP, Tohidast-Akrad M, Kollias G, et al. Osteoclasts are essential for TNF-alpha-mediated joint destruction. J Clin Investig. 2002;110:1419–27. https://doi.org/10.1172/JCI15582.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Lionel Ivashkiv for providing human patient samples. This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIP; No. 2020R1A2C1006101 and No. 2020M3A9B603885111 to SP) and by the Tow Foundation (to K-HP-M). Figure 1a was generated by BioRender.

Author information

Authors and Affiliations

Authors

Contributions

SB and KK designed and performed experiments and bioinformatics analysis, analyzed the data, and wrote the manuscript. KK performed the bioinformatics analysis and contributed his expertise. HK, ML, BO and KK performed experiments and analyzed data. HK, SM and JHC contributed their expertise. EYL, SHP and K-HP-M designed and supervised the study, and wrote the manuscript. K-HP-M conceptualized the study. All authors reviewed and provided input on the manuscript.

Corresponding authors

Correspondence to Eun Young Lee, Sung Ho Park or Kyung-Hyun Park-Min.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, S., Kim, K., Kang, K. et al. RANKL-responsive epigenetic mechanism reprograms macrophages into bone-resorbing osteoclasts. Cell Mol Immunol 20, 94–109 (2023). https://doi.org/10.1038/s41423-022-00959-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-022-00959-x

Keywords

This article is cited by

Search

Quick links