Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glucose metabolism controls human γδ T-cell-mediated tumor immunosurveillance in diabetes

Abstract

Patients with type 2 diabetes mellitus (T2DM) have an increased risk of cancer. The effect of glucose metabolism on γδ T cells and their impact on tumor surveillance remain unknown. Here, we showed that high glucose induced Warburg effect type of bioenergetic profile in Vγ9Vδ2 T cells, leading to excessive lactate accumulation, which further inhibited lytic granule secretion by impairing the trafficking of cytolytic machinery to the Vγ9Vδ2 T-cell-tumor synapse by suppressing AMPK activation and resulted in the loss of antitumor activity in vitro, in vivo and in patients. Strikingly, activating the AMPK pathway through glucose control or metformin treatment reversed the metabolic abnormalities and restored the antitumor activity of Vγ9Vδ2 T cells. These results suggest that the impaired antitumor activity of Vγ9Vδ2 T cells induced by dysregulated glucose metabolism may contribute to the increased cancer risk in T2DM patients and that metabolic reprogramming by targeting the AMPK pathway with metformin may improve tumor immunosurveillance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Additional data collected during this study are available from the corresponding author upon reasonable request.

References

  1. Cho NH, Shawe JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–81. https://doi.org/10.1016/j.diabres.2018.02.023.

    Article  CAS  PubMed  Google Scholar 

  2. Holman N, Young B, Gadsby R. Current prevalence of Type 1 and Type 2 diabetes in adults and children in the UK. Diabet Med. 2015;32:1119–20. https://doi.org/10.1111/dme.12791.

    Article  CAS  PubMed  Google Scholar 

  3. Bruno G, Runzo C, Cavallo-Perin P, Merlletti F, Rivetti M, Pinach S, et al. Incidence of type 1 and type 2 diabetes in adults aged 30-49 years: the population-based registry in the province of Turin, Italy. Diabetes Care. 2005;28:2613–9. https://doi.org/10.2337/diacare.28.11.2613.

    Article  PubMed  Google Scholar 

  4. Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 2012;27:269–73. https://doi.org/10.5001/omj.2012.68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Giovannucci E, Harlan DM, Archer MC, Bergenstalet RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin. 2010;60:207–21. https://doi.org/10.3322/caac.20078.

    Article  PubMed  Google Scholar 

  6. Shlomai G, Neel B, LeRoith D, Gallagher EJ. Type 2 diabetes mellitus and cancer: the role of pharmacotherapy. J Clin Oncol. 2016;34:4261–9. https://doi.org/10.1200/JCO.2016.67.4044.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK, et al. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity. Biomed Pharmacother. 2018;107:306–28. https://doi.org/10.1016/j.biopha.2018.07.157.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou T, Hu Z, Yang S, Sun L, Yu Z, Wang G, et al. Role of adaptive and innate immunity in type 2 diabetes mellitus. J Diabetes Res. 2018;2018:7457269. https://doi.org/10.1155/2018/7457269.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Stentz FB, Kitabchi AE. Activated T lymphocytes in Type 2 diabetes: implications from in vitro studies. Curr Drug Targets. 2003;4:493–503. https://doi.org/10.2174/1389450033490966.

    Article  CAS  PubMed  Google Scholar 

  10. Dalmas E. Role of innate immune cells in metabolism: from physiology to type 2 diabetes. Semin Immunopathol. 2019;41:531–45. https://doi.org/10.1007/s00281-019-00736-5.

    Article  PubMed  Google Scholar 

  11. Xia C, Rao X, Zhong J. Role of T lymphocytes in type 2 diabetes and diabetes-associated inflammation. J Diabetes Res. 2017;2017:6494795. https://doi.org/10.1155/2017/6494795.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Gardiner CM. NK cell metabolism. J Leukoc Biol. 2019;105:1235–42. https://doi.org/10.1002/JLB.MR0718-260R.

    Article  CAS  PubMed  Google Scholar 

  13. Van den Bossche J, O’Neill LA, Menon D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 2017;38:395–406. https://doi.org/10.1016/j.it.2017.03.001.

    Article  CAS  PubMed  Google Scholar 

  14. Nam HW, Cho YJ, Lim JA, Kim SJ, Kim H, Sim SY, et al. Functional status of immune cells in patients with long-lasting type 2 diabetes mellitus. Clin Exp Immunol. 2018;194:125–36. https://doi.org/10.1111/cei.13187.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chen Y, Tian Z. Innate lymphocytes: pathogenesis and therapeutic targets of liver diseases and cancer. Cell Mol Immunol. 2021;18:57–72. https://doi.org/10.1038/s41423-020-00561-z.

    Article  CAS  PubMed  Google Scholar 

  16. Kabelitz D, Serrano R, Kouakanou L, Peters C, Kalyan S. Cancer immunotherapy with gammadelta T cells: many paths ahead of us. Cell Mol Immunol. 2020;17:925–39. https://doi.org/10.1038/s41423-020-0504-x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Foord E, Arruda LCM, Gaballa A, Klynning C, Uhlin M. Characterization of ascites- and tumor-infiltrating gammadelta T cells reveals distinct repertoires and a beneficial role in ovarian cancer. Sci Transl Med. 2021;13:eabb0192. https://doi.org/10.1126/scitranslmed.abb0192.

    Article  CAS  PubMed  Google Scholar 

  18. Xiang Z, Tu W. Dual face of Vgamma9Vdelta2-T cells in tumor immunology: anti- versus pro-tumoral activities. Front Immunol. 2017;8:1041. https://doi.org/10.3389/fimmu.2017.01041.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hayday AC. gammadelta T cell update: adaptate orchestrators of immune surveillance. J Immunol. 2019;203:311–20. https://doi.org/10.4049/jimmunol.1800934.

    Article  CAS  PubMed  Google Scholar 

  20. O’Brien RL, Born WK. gammadelta T cell subsets: a link between TCR and function? Semin Immunol. 2010;22:193–8. https://doi.org/10.1016/j.smim.2010.03.006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Vantourout P, Hayday A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol. 2013;13:88–100. https://doi.org/10.1038/nri3384.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Bonneville M, O’Brien RL, Born WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol. 2010;10:467–78. https://doi.org/10.1038/nri2781.

    Article  CAS  PubMed  Google Scholar 

  23. Born WK, Reardon CL, O’Brien RL. The function of gammadelta T cells in innate immunity. Curr Opin Immunol. 2006;18:31–38. https://doi.org/10.1016/j.coi.2005.11.007.

    Article  CAS  PubMed  Google Scholar 

  24. Zheng J, Liu Y, Lau YL, Tu W. gammadelta-T cells: an unpolished sword in human anti-infection immunity. Cell Mol Immunol. 2013;10:50–57. https://doi.org/10.1038/cmi.2012.43.

    Article  CAS  PubMed  Google Scholar 

  25. Zheng J, Wu WL, Liu Y, Xiang Z, Liu M, Chan KH, et al. The therapeutic effect of pamidronate on lethal avian influenza A H7N9 virus infected humanized mice. PLoS One. 2015;10:e0135999. https://doi.org/10.1371/journal.pone.0135999.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Li J, Li H, Mao H, Yu M, Feng T, Yang F, et al. Vgamma9Vdelta2-T lymphocytes have impaired antiviral function in small-for-gestational-age and preterm neonates. Cell Mol Immunol. 2013;10:253–60. https://doi.org/10.1038/cmi.2012.78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Pei Y, Xiang Z, Huang C, Wang X, Mu X, Wen L, et al. CD137 costimulation enhances the antiviral activity of Vgamma9Vdelta2-T cells against influenza virus. Signal Transduct Target Ther. 2020;5:74. https://doi.org/10.1038/s41392-020-0174-2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Xu Y, Xiang Z, Alnaggar M, Kouakanou L, Li J, He Y, et al. Allogeneic Vgamma9Vdelta2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cell Mol Immunol. 2021;18:427–39. https://doi.org/10.1038/s41423-020-0515-7.

    Article  CAS  PubMed  Google Scholar 

  29. Beetz S, Wesch D, Marischen L, Welte S, Oberg HH, Kabelitz D, et al. Innate immune functions of human gammadelta T cells. Immunobiology. 2008;213:173–82. https://doi.org/10.1016/j.imbio.2007.10.006.

    Article  CAS  PubMed  Google Scholar 

  30. Nielsen MM, Witherden DA, Havran WL. gammadelta T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol. 2017;17:733–45. https://doi.org/10.1038/nri.2017.101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Maniar A, Zhang X, Lin W, Gastman BR, Pauza CD, Strome SE, et al. Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement. Blood. 2010;116:1726–33. https://doi.org/10.1182/blood-2009-07-234211.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Chen Q, Wen K, Lv A, Liu M, Ni K, Xiang Z, et al. Human Vgamma9Vdelta2-T cells synergize CD4(+) T follicular helper cells to produce influenza virus-specific antibody. Front Immunol. 2018;9:599. https://doi.org/10.3389/fimmu.2018.00599.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Silva-Santos B, Mensurado S, Coffelt SB. gammadelta T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat Rev Cancer. 2019;19:392–404. https://doi.org/10.1038/s41568-019-0153-5.

    Article  CAS  PubMed  Google Scholar 

  34. Xiang Z, Liu Y, Zheng J, Liu M, Lv A, Gao Y, et al. Targeted activation of human Vgamma9Vdelta2-T cells controls epstein-barr virus-induced B cell lymphoproliferative disease. Cancer Cell. 2014;26:565–76. https://doi.org/10.1016/j.ccr.2014.07.026.

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Xiang Z, Liu Y, Huang C, Pei Y, Wang X, et al. Exosomes derived from Vdelta2-T cells control Epstein-Barr virus-associated tumors and induce T cell antitumor immunity. Sci Transl Med. 2020;12:eaaz3426. https://doi.org/10.1126/scitranslmed.aaz3426.

    Article  CAS  PubMed  Google Scholar 

  36. Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA. 1999;281:2005–12. https://doi.org/10.1001/jama.281.21.2005.

    Article  CAS  PubMed  Google Scholar 

  37. Wu D, Hu D, Chen H, Shi G, Fetahu I, Wu F, et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature. 2018;559:637–41. https://doi.org/10.1038/s41586-018-0350-5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Tu W, Lau YL, Zheng J, Liu Y, Chan PL, Mao H, et al. Efficient generation of human alloantigen-specific CD4+ regulatory T cells from naive precursors by CD40-activated B cells. Blood. 2008;112:2554–62. https://doi.org/10.1182/blood-2008-04-152041.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Michelet X, Dyck L, Hogan A, Loftus RM, Duquette D, Wei K, et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat Immunol. 2018;19:1330–40. https://doi.org/10.1038/s41590-018-0251-7.

    Article  CAS  PubMed  Google Scholar 

  40. Chen X, Trivedi PP, Ge B, Krzewski K, Strominger JL. Many NK cell receptors activate ERK2 and JNK1 to trigger microtubule organizing center and granule polarization and cytotoxicity. Proc Natl Acad Sci USA. 2007;104:6329–34. https://doi.org/10.1073/pnas.0611655104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74. https://doi.org/10.1172/JCI13505.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kopietz F, Berggreen C, Larsson S, Säll J, Ekelund M, Sakamoto K, et al. AMPK activation by A-769662 and 991 does not affect catecholamine-induced lipolysis in human adipocytes. Am J Physiol Endocrinol Metab. 2018;315:E1075–E1085. https://doi.org/10.1152/ajpendo.00110.2018.

    Article  CAS  PubMed  Google Scholar 

  43. De la Roche M, Asano Y, Griffiths GM. Origins of the cytolytic synapse. Nat Rev Immunol. 2016;16:421–32. https://doi.org/10.1038/nri.2016.54.

    Article  CAS  PubMed  Google Scholar 

  44. Orange JS. Formation and function of the lytic NK-cell immunological synapse. Nat Rev Immunol. 2008;8:713–25. https://doi.org/10.1038/nri2381.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Voskoboinik I, Smyth MJ, Trapani JA. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol. 2006;6:940–52. https://doi.org/10.1038/nri1983.

    Article  CAS  PubMed  Google Scholar 

  46. Voskoboinik I, Whisstock JC, Trapani JA. Perforin and granzymes: function, dysfunction and human pathology. Nat Rev Immunol. 2015;15:388–400. https://doi.org/10.1038/nri3839.

    Article  CAS  PubMed  Google Scholar 

  47. Wu J, Akhmanova A. Microtubule-organizing centers. Annu Rev Cell Dev Biol. 2017;33:51–75. https://doi.org/10.1146/annurev-cellbio-100616-060615.

    Article  CAS  PubMed  Google Scholar 

  48. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:854–65.

  49. Wegiel B, Vuerich M, Daneshmandi S, Seth P. Metabolic switch in the tumor microenvironment determines immune responses to anti-cancer therapy. Front Oncol. 2018;8:284. https://doi.org/10.3389/fonc.2018.00284.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14. https://doi.org/10.1126/science.123.3191.309.

    Article  CAS  PubMed  Google Scholar 

  51. Nakano A, Kato H, Watanabe T, Min KD, Yamazaki S, Asano Y, et al. AMPK controls the speed of microtubule polymerization and directional cell migration through CLIP-170 phosphorylation. Nat Cell Biol. 2010;12:583–90. https://doi.org/10.1038/ncb2060.

    Article  CAS  PubMed  Google Scholar 

  52. Zurli V, Montecchi T, Heilig R, Poschke I, Volkmar M, Wimmer G, et al. Phosphoproteomics of CD2 signaling reveals AMPK-dependent regulation of lytic granule polarization in cytotoxic T cells. Sci Signal. 2020;13:eaaz1965. https://doi.org/10.1126/scisignal.aaz1965.

    Article  CAS  PubMed  Google Scholar 

  53. Palmer SC, Strippoli GFM. Metformin as first-line treatment for type 2 diabetes. Lancet. 2018;392:120. https://doi.org/10.1016/S0140-6736(18)31541-1.

    Article  PubMed  Google Scholar 

  54. He L, Wondisford FE. Metformin action: concentrations matter. Cell Metab. 2015;21:159–62. https://doi.org/10.1016/j.cmet.2015.01.003.

    Article  CAS  PubMed  Google Scholar 

  55. Correia S, Carvalho C, Santos MS, Seica R, Oliveira CR, Moreira PI. Mechanisms of action of metformin in type 2 diabetes and associated complications: an overview. Mini Rev Med Chem. 2008;8:1343–54. https://doi.org/10.2174/138955708786369546.

    Article  CAS  PubMed  Google Scholar 

  56. Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I. Metformin as an anticancer agent. Trends Pharm Sci. 2018;39:867–78. https://doi.org/10.1016/j.tips.2018.07.006.

    Article  CAS  PubMed  Google Scholar 

  57. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330:1304–5. https://doi.org/10.1136/bmj.38415.708634.F7.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Emami Riedmaier A, Fisel P, Nies AT, Schaeffeler E, Schwab M. Metformin and cancer: from the old medicine cabinet to pharmacological pitfalls and prospects. Trends Pharm Sci. 2013;34:126–35. https://doi.org/10.1016/j.tips.2012.11.005.

    Article  CAS  PubMed  Google Scholar 

  59. Prasad S, Gupta SC, Aggarwal BB. Serendipity in cancer drug discovery: rational or coincidence? Trends Pharm Sci. 2016;37:435–50. https://doi.org/10.1016/j.tips.2016.03.004.

    Article  CAS  PubMed  Google Scholar 

  60. Zingales V, Distefano A, Raffaele M, Zanghi A, Barbagallo I, Vanella L. Metformin: a bridge between diabetes and prostate cancer. Front Oncol. 2017;7:243. https://doi.org/10.3389/fonc.2017.00243.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Zhou XL, Xue WH, Ding XF, Li LF, Dou MM, Zhang WJ, et al. Association between metformin and the risk of gastric cancer in patients with type 2 diabetes mellitus: a meta-analysis of cohort studies. Oncotarget. 2017;8:55622–31. https://doi.org/10.18632/oncotarget.16973.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Donnelly RP, Finlay DK. Glucose, glycolysis and lymphocyte responses. Mol Immunol. 2015;68:513–9. https://doi.org/10.1016/j.molimm.2015.07.034.

    Article  CAS  PubMed  Google Scholar 

  63. Ganeshan K, Chawla A. Metabolic regulation of immune responses. Annu Rev Immunol. 2014;32:609–34. https://doi.org/10.1146/annurev-immunol-032713-120236.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Shi R, Tang YQ, Miao H. Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm. 2020;1:47–68. https://doi.org/10.1002/mco2.6. 2020

    Article  PubMed Central  PubMed  Google Scholar 

  65. Finlay DK. Metabolic regulation of natural killer cells. Biochem Soc Trans. 2015;43:758–62. https://doi.org/10.1042/BST20150116.

    Article  CAS  PubMed  Google Scholar 

  66. Lopes N, McIntyre C, Martin S, Raverdeau M, Raverdeau N, Kohlgruber AC, et al. Distinct metabolic programs established in the thymus control effector functions of gammadelta T cell subsets in tumor microenvironments. Nat Immunol. 2021. https://doi.org/10.1038/s41590-020-00848-3.

  67. Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 2016;24:657–71. https://doi.org/10.1016/j.cmet.2016.08.011.

    Article  CAS  PubMed  Google Scholar 

  68. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007;109:3812–9. https://doi.org/10.1182/blood-2006-07-035972.

    Article  CAS  PubMed  Google Scholar 

  69. Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D’Acquisto F, et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 2015;13:e1002202. https://doi.org/10.1371/journal.pbio.1002202.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Kabanova A, Zurli V, Baldari CT. Signals controlling lytic granule polarization at the cytotoxic immune synapse. Front Immunol. 2018;9:307. https://doi.org/10.3389/fimmu.2018.00307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Kagi D, Ledermann B, Bürki K, Seiler P, Odermatt B, Olsen KJ, et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature. 1994;369:31–37. https://doi.org/10.1038/369031a0.

    Article  CAS  PubMed  Google Scholar 

  72. Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016;48:e245. https://doi.org/10.1038/emm.2016.81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Seed Funding for Strategic Interdisciplinary Research Scheme, University of Hong Kong, and the General Research Fund, Research Grants Council of Hong Kong (17122222, 17122519, 17126317), Hong Kong SAR, China. This work was also partly supported by the National Natural Science Foundation of China (32000616), China.

Author information

Authors and Affiliations

Authors

Contributions

XM, YL, and WT conceived and designed the study, interpreted the results, and wrote the manuscript. XM, ZX, YX, YC, and XW performed the experiments and analyzed the results with the assistance of CRT, YZ and WZ. JH and JL obtained the patient samples. ZY, WHL, and YLL provided advice, reagents, and critical insight.

Corresponding authors

Correspondence to Yinping Liu or Wenwei Tu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, X., Xiang, Z., Xu, Y. et al. Glucose metabolism controls human γδ T-cell-mediated tumor immunosurveillance in diabetes. Cell Mol Immunol 19, 944–956 (2022). https://doi.org/10.1038/s41423-022-00894-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-022-00894-x

Keywords

This article is cited by

Search

Quick links